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Economic models are necessarily simplifications. To this end, an important consideration in 

macroeconomics is how to best model the aggregate economy and the aggregate production 

function. Having experienced quite a significant rise to prominence in macroeconomic analysis, 

the starting point of much aggregate research has focused on the Cobb-Douglas model as a 

representation of the aggregate economy. Accordingly, an extensive avenue of analysis has been 

attempting to conceptualize and evaluate how this aggregate model varies across country and 

across time.  

While the simplicity of the Cobb-Douglas form is a valuable feature, it has limitations and 

implications. In canonical Cobb-Douglas specifications, a single multiplicative “total factor 

productivity” (TFP) is assumed. This implies that all factor-specific technical efficiencies are 

perfectly correlated. Further, in canonical Cobb-Douglas specifications, often only unitary broad 

aggregate factor measures are used – that is, the labor endowment, the capital stock. This implies 

that sub-groups within the factor aggregate are perfect substitutes in production. Of particular 

focus here will be the nature of the “skilled” and “unskilled” labor subgroups of the labor 

aggregate. Moreover, most studies of cross-country income variation employing the single 

multiplicative TFP framework find that GDP per capita and TFP are robustly positively related. 

Taken together, this implicitly asserts that richer countries use all factors of production more 

efficiently, and accordingly that poorer countries, using inferior and inappropriate technology, 

use all factors of production less efficiently.  

In their seminal paper, “The World Technology Frontier,” Caselli and Coleman (2006) study the 

aggregate production function with non-neutral technology when skilled and unskilled labor are 

allowed to be imperfect substitutes. They study cross-country technology differences and labor 

endowments for 52 countries in the year 1988, and uncover skill bias in these cross-country 

technology differences. They find strong evidence of negative relation between these factor 

efficiencies, and this observed tradeoff between skilled labor efficiency and unskilled labor 

efficiency leads them to conclude that a proverbial ‘world technology frontier’ exists. Moreover, 

they find that these relative factor efficiencies are systematically related to relative labor 

endowments. They surmise that richer, skilled-labor abundant countries, choose skilled-labor 

augmenting technology, and that poorer, unskilled-labor abundant countries choose unskilled-

labor augmenting technology. In the face of these observations, they propose a simple model to 

rationalize country-specific technology choices. Given that many of the world’s poor countries 

lie well within the world technology frontier, and given that substantial output gains could be 

realized if poor countries could access frontier technology, they conclude that barriers to 
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technology adoption and absorption contribute substantively to the observed variation in cross-

country income.  

In this dissertation, I strictly follow and expand upon their framework and methodology, and 

make three main contributions. First, I extend their approach both across entity and across time 

by performing a similar analysis for a set of 114 countries from 1950 to 2014. I confirm their 

main findings of persistent skill bias in cross-country technology efficiencies. Further, given that 

I construct panel data rather than cross-sectional data, the time series dimension allows me to add 

a dynamic aspect to the framework, and accordingly I map and analyze the evolution of 

technology frontiers. I find that the evolution of technology frontiers largely squares with the 

stylized facts on realized economic growth over the second half of the 20th and early 21st 

centuries. Moreover, I find that these results are robust to a host of model parameter calibrations. 

Second, I define a novel “technology space” variable in order to perform some counterfactual 

and development accounting calculations. In my panel data, I confirm what Caselli and Coleman 

(2006) find in their cross- sectional analysis – that is, that substantial output gains could be 

realized if barriers to technology adoption were eliminated, and that these barriers can account 

for approximately 48% of the observed variation of income differences across countries. Third, I 

attempt to provide a causal explanation of the evolution of barriers to technology adoption over 

my sample by investigating the effect of trade on a country’s available technology space. I 

employ an instrumental variable two-stage least squares estimation approach, relying on the 

geography-based time-variant trade instrument constructed in Magistretti and Tabellini (2019). I 

find that trade has a robust and statistically significant causal effect on a country’s technology 

space, with my estimates indicating that a 10% increase in trade volume gives rise to 

approximately a 3% increase in a country’s available technology space.  

 

II.  Related Literatures 

By following closely and building substantively upon Caselli and Coleman (2006),1 this 

dissertation is part of, and nests well within, the intersections of the appropriate technology, 

barriers to adoption, development accounting, and the returns to trade literatures.  

Much research and analysis has been devoted to understanding how to model the aggregate 

economy, and to what fraction of economic growth could be attributed to factors of production 

and what fraction could be attributed to the residual TFP (see Solow, 1957; Jorgenson and 

Griliches, 1967). Specifically, building upon the seminal paper by Mankiw et al. (1992), much 

empirical and theoretical work exploring cross-country growth regressions was produced in 

response (see Islam, 1995; Hall and Jones, 1999) and a consensus view emerged that factor 

inputs, while important, could not explain all of observed cross-country income variation. 

Indeed, the traditional solution to this puzzle has been to assume that a single factor-neutral 

productivity term is what sets apart the aggregate production functions of poor and rich 

countries, with poorer countries being less productive/efficient on the whole when compared to 

 
1 Their working paper Caselli and Coleman (2000) is also highly informative. 
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richer countries.2 Yet, this notion of a single multiplicative TFP, among other aspects in the 

canonical literature, have proven to be overly simplistic assumptions.  

In an attempt to better understand the nature of productivity and technical efficiency variations 

across countries, and the observed cross-country variation in income, several distinct yet 

complementary literatures have evolved.  

Principally, a literature of appropriate technology arose out of the seminal work by Stiglitz and 

Atkinson (1969), (see Diwan and Rodrik, 1991; Basu and Weil, 1998; Acemoglu and Zilibotti, 

2001). Appropriate technology choice is the idea that countries with different factor endowments 

will employ different technologies. In this literature, there exists a frontier of optimal efficient 

technologies, rather than a single state-of-the-art technology. Further, a country’s technology 

choice is an endogenous outcome arising from the country’s particular factor endowments. 

Emphasis is there- fore placed on the assertion that countries’ particular factor endowments will 

induce them to make optimally different technology choices given their technology frontiers. 

This literature is closely related to the literature on innovation and on directed technical change, 

which investigates whether technical change is biased toward certain factors of production (see 

Acemoglu, 1998; Jones, 2005). Here, technological change can be biased if productivity 

improvements and efficiency increases systematically favor a particular abundant factor of 

production vis-à-vis the other less-abundant factors of production.  

Additionally, a literature emerged that places emphasis on the barriers to technology adoption as 

an important determinant of technological variation and ultimately income variation (see Parente 

and Prescott, 1994; Eaton and Kortum, 2001). Barriers to technology adoption is broadly the idea 

that there exists some set of factors which impede the diffusion of technological advancements 

and hamper the capacity of certain countries to adopt new technologies. A plethora of 

interpretations and observations have been entertained in this literature - Acemoglu and 

Robinson (2006) focus on the role of political elites and institutions in impeding technological 

change; Parente and Prescott (1999) evaluate the effect of monopoly control in markets leading 

to inefficient technologies and impeding technological adoption; Ferraro (2017) considers the 

impact of growth volatility as a barrier to technology diffusion. In the pursuit of fully explaining 

the data on cross-country income variation, there have been some attempts to combine the 

appropriate technology aspect with the barriers to adoption aspect (along with other 

considerations) into a single unified growth theory (see Gancia and Zilibotti, 2009; Gancia et al., 

2011).  

Finally, my dissertation adds to the growing body of work that builds upon or implements in a 

novel way the framework in Caselli and Coleman (2006), which includes: Alesina et al. (2015) 

evaluates the impact of labor market regulations on labor productivities; Atesagaoglu et al. 

(2018) considers the impact of the informal economy on factor productivities; Li (2010) analyzes 

factor productivities of multinational subsidiaries; Rossi (2017) similarly evaluates the variation 

of the productivities of skilled and unskilled labor across countries but uses micro-data on skill 

premia; Growiec (2012) studies the world technology frontier with a non-parametric data 
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envelopment analysis approach and still finds that, especially recently, technological progress 

has been decidedly non-neutral.  

To the best of my understanding, I add to this literature (1) by being the first to reappraise and 

reevaluate Caselli and Coleman’s findings over a larger sample of countries and dynamically 

over a large time period, and (2) by being the first to quantify the effects of trade on increasing a 

country’s available technology space, and thereby decreasing its barriers to technology adoption 

(motivated primarily by the existing literature on the effects of trade on growth in Frankel and 

Romer, 1999; Feyrer, 2009a; Kee et al., 2009; Feyrer, 2009b; Arkolakis et al., 2012; Magistretti 

and Tabellini, 2019).  

III.  Data Sources and Compilation 

Principally, regarding the macroeconomic variables, I rely heavily on version 9.0 of the Penn 

World Table, which is a massive unbalanced panel providing various measures of levels of 

income, output, and productivity, for a large number of countries over the period 1950-2014 (see 

Feenstra et al., 2015). From this dataset, I extract annual data on population, gross domestic 

product (GDP), and the capital stock, for 182 countries over the years 1950-2014.3 

For constructing the skilled and unskilled labor series, I rely on four datasets. First, is the Barro-

Lee Educational Attainment dataset, which provides country-level data on the percentage of the 

labor force with no education, some primary education, primary education completed, some 

secondary education, secondary education completed, some higher education, and higher 

education completed (see Barro and Lee, 2013). The Barro-Lee dataset contains observations 

every 5 years. Therefore, in order to have annual observations, I use each 5-year data point to 

linearly impute values for the four years in between each observation.  

Then, I rely on two datasets containing estimates of mincer returns to education. First is a dataset 

from Caselli et al. (2015), which combines mincer coefficient estimates from a wide swath of the 

empirical literature, yielding a dataset of 113 countries for the years 1995 and 2005. Second is a 

dataset from Psacharopoulos and Patrinos (2018), which similarly collates country-level mincer 

estimates from a wide swath of the empirical literature, yielding unbalanced data on 121 

countries with particular year estimates from 1950 to 2014. I combine these two aggregate 

datasets to produce a single dataset of mincer estimates for 138 countries over the years 1950 to 

2014. Where there is a datapoint estimate from both sources for a specific country in a specific 

year, I take the average. I annually fill forward the estimates for each country so that the mincer 

return is assumed to be constant across years within a country until there is a newer datapoint 

estimate.4 

Finally, I use an unpublished dataset from Barro-Lee that reports the duration in years for 

primary and secondary education for 146 countries over the period 1950-2010, at 5 year 

 
3 I first exclude three countries from my analysis - Qatar, Kuwait, and the United Arab Emirates - due to concerns regarding data 

quality and availability, late entry into the sample, and being heavy oil-driven export economies with initial low populations. 
4 I further exclude three countries from my analysis - Hungary, Slovakia, and Kyrgyzstan - due to concerns regarding schooling 

and mincer data quality and availability, late entry into the sample, and implausibly large implied labor stocks.  



Technology and Trade 

70 

 

intervals. Similar to the treatment of the mincer returns data, I annually fill forward the school 

duration estimates for each country between observations. 

 

IV.  An Updated “World Technology Frontier” 

A. The Aggregate Production Function 

Generally, a Cobb-Douglas specification representing the aggregate production of an economy 

takes the form  

(1) 𝑦 = 𝑘𝛼(𝐴ℎ)1−𝛼 

where y is GDP per capita, k is capital per capita, h is human capital per capita, A is TFP, and α 

is the capital share of income. While informative, this aggregate specification makes some 

simplifying assumptions - two of particular interest here being the supposition of a single 

multiplicative technology and the perfect substitutability within factor aggregates. Regarding the 

former, the implication is that a single factor efficiency term can sufficiently and accurately 

represent diverse technical efficiencies across countries (and across time). While a plausible 

simplification, this implies that the individual efficiencies of different factors are perfectly 

positively correlated. Regarding the latter assumption, the implication is that workers with 

different education and skill levels are assumed to be perfectly substitutable factors of 

production. At first glance, this simplification appears incorrect, as certain aspects of production 

can only be performed by workers with a particular skill-level. Moreover, this assumption 

contradicts empirical estimates of the elasticity of substitution between workers of different skill 

levels (see Katz and Murphy, 1992; Autor et al., 1998; Ciccone and Peri, 2005, among many 

others).  

In their paper, Caselli and Coleman (2006) consider an aggregate production function 

specification where the assumption of perfect substitutability of labor is relaxed, and where 

separate efficiency terms are included for each labor type, allowing for comparative assessments 

of the relative efficiencies of labor types. They consider, as will I, the functional form  

(2)  𝑦 = 𝑘α[ (𝐴𝑢𝐿𝑢)σ + (𝐴𝑠𝐿𝑠)σ]
1−α

σ  

where y is GDP per capita, k is capital per capita, Lu is the unskilled labor aggregate, Au is the 

efficiency of unskilled labor, Ls is the skilled labor aggregate, As is the efficiency of skilled labor, 

α is the capital share of income, and 𝜎 governs the substitutability between skilled and unskilled 

labor such that 
1

1−𝜎
 is the elasticity of substitution. When 𝜎 =  1, the elasticity of substitution 

1

1−σ
→ ∞, which is the case of perfect substitution. When 0 < σ < 1, the elasticity of substitution 

is some finite 
1

1−σ
> 1, and unskilled and skilled labor are imperfect substitutes, as is found in 

the empirical literature. 

Of primary interest are a country’s specific technology choices Au and As, which vary across 

country and across time. In order to solve for these two unknowns, I assume that factors of 



Issues in Political Economy, 2022 

 

71 

 

production are paid their marginal product. Therefore, I can write the ratio of wages (that is, the 

skilled wage premium) as5 

(3) 
𝑤𝑠

𝑤𝑢
= (

𝐴𝑠

𝐴𝑢
)

σ
(

𝐿𝑠

𝐿𝑢
)

σ−1
 

Using equations (2) and (3), I can back out and solve for Au and As. Particularly, these two 

unknowns of interest have the closed form solutions6 

(4) 𝐴𝑢 =
𝑦

1
1−α𝑘

−α
1−α

𝐿𝑢
(

𝑤𝑢𝐿𝑢

𝑤𝑢𝐿𝑢+𝑤𝑠𝐿𝑠
)

1

σ
 

(5) 𝐴𝑠 =
𝑦

1
1−α𝑘

−α
1−α

𝐿𝑠
(

𝑤𝑠𝐿𝑠

𝑤𝑢𝐿𝑢+𝑤𝑠𝐿𝑠
)

1

σ
 

A.i.  Constructing the Labor Series and Skilled Wage Premium 

Following the methodology in Caselli and Coleman (2006), I construct the unskilled and skilled 

labor aggregates as follows. The labor aggregates are partitioned into un- skilled and skilled 

according to a heuristic “literacy threshold” - that is, unskilled labor are workers who have not 

completed a primary education, and skilled labor are workers with any capacity above having 

completed a primary education. As in Caselli and Coleman (2006) and indeed as is the 

convention in the literature, subgroups within the aggregates are weighted by relative wages, 

interpreted as their relative efficiency units. Concretely, where β is the country and year specific 

mincer coefficient, the unskilled labor aggregate in no education equivalents is  

(6) 𝐿𝑢 = no education + [exp (β ∗
primary years

2
) ⋅ some primary] 

Similarly, the skilled labor aggregate in primary education completed equivalents is 

(7)  𝐿𝑠 = primary completed + [exp (β ∗
secondary years

2
) ⋅ some secondary]  

                                                      + [exp(β ∗ secondary years) ⋅ secondary completed] 

    + [exp (β ∗ (secondary years +
higher years

2
)) ⋅ some higher] 

    +[exp(β ∗ (secondary years + higher years)) ⋅ higher completed] 

As in Caselli and Coleman (2006), I apply a rescaling factor to the skilled labor aggregate to 

account for variation in the duration of primary schooling across countries. Thusly, multiplying 

Ls by exp[β(primary school duration − 4)] converts it to a more cross-country comparable 4-

years-of-schooling equivalents.  

 
5 For the derivation, see Appendix A.  
6 For the derivation, see Appendix B. 
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Following the methodology in Caselli and Coleman (2006), I construct the relative skilled wage 

premium as follows. Given that the mincer coefficient represents the percentage increase in wage 

from an additional year of schooling, and that the unskilled labor aggregate is in no schooling 

equivalents and the skilled labor aggregate is in 4-years of schooling equivalents, I can define the 

wage ratio as 𝑤𝑠/𝑤𝑢 = exp(β ⋅ 4). 

A.ii.  Summary Statistics and Stylized Facts 

Table 1 reports summary statistics on key variables of interest. Given the breadth of my sample, I 

observe considerable variation over time and over entity of most of my variables of interest. 

Table 2 shows the correlation matrix of key variables of interest. Generally, the results from this 

correlation matrix are unsurprising. Capital per capita is positively related with GDP per capita; 

the skilled labor endowment is positively related with GDP per capita; the unskilled labor 

endowment is negatively related with GDP per capita. Noteworthy for the analysis to follow is 

the slight negative (and statistically insignificant) relations between the skilled wage premium 

and GDP per capita, and the slightly positive (and also statistically insignificant) relations 

between the skilled wage premium and both skilled labor and unskilled labor. Given that I have 

amassed a valuable set of panel data, it is worth shortly exploring and presenting the evolution of 

these key variables of interest over time. 
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Figure 1 plots the GDP per capita of countries by region over time and paints a predictable 

picture. North America and Europe & Central Asia have the highest GDP per capita and have 

grown at relatively constant rates over the past 70 years. East Asia & Pacific experience muted 

growth until the 1980’s, but since then display an impressive growth path. Growth in the Middle 

East & North Africa is somewhat stagnant and unimpressive. Likewise, growth in Latin America 

& Caribbean is lackluster, but has improved somewhat since the 2000’s, driven by some well-

performing countries. Similarly, growth in South Asia has been muted, but has improved since 

the 1990’s, driven mostly by the growth in India. Lastly, GDP per capita in Sub-Saharan Africa 

has been essentially flat with very limited welfare improvements.  

Figure 2 plots capital per capita over time. The trends seen here broadly mirror those in Figure 1.  
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Figure 3 plots the ratio of skilled to unskilled labor. Skilled labor is more abundant by large 

factors in both North America and Europe & Central Asia, but there has been some 

comparatively smaller increases in the relative abundance of skilled labor notably in the Middle 

East & North Africa, East Asia & Pacific, and to a lesser extent Latin America & Caribbean. The 

relative abundance of skilled labor remains the lowest in South Asia and Sub-Saharan Africa.  
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Lastly, Figure 4 plots the evolution of the constructed skilled labor wage premium. In the 

beginning, relatively skilled-labor abundant regions have relatively low skilled wage premiums. 

Conversely, relatively unskilled-labor abundant regions have relatively high skilled wage 

premiums. Overtime however, the evolution of the skilled labor wage premium appears rather 

idiosyncratic, and it is difficult to make any substantive generalizations when trying to reconcile 

the evolution of the skilled wage premium vis-à-vis the evolution of the relative abundance of 

skilled labor.  

A.iii. Selecting Model Parameters 

In order to solve for a country’s skilled and unskilled labor efficiencies, the two model 

parameters - the capital share of income α and the elasticity of substitution 
1

1−σ
 – need to be 

assigned plausible values. As is standard in the literature, I set the capital share of income α =
 1/3 (see Hall and Jones, 1999; Aiyar and Feyrer, 2002). Following Caselli and Coleman (2006), 

I set the elasticity of substitution between skilled and unskilled labor 
1

1−σ
= 1.4 (that is, σ ≈

0.286) so that the two labor types are imperfect substitutes (see Katz and Murphy, 1992; Autor 

et al., 1998; Ciccone and Peri, 2005).  

B. Preliminary Analysis 

Using equations (4) and (5) I solve for my two unknowns, unskilled labor efficiency and skilled 

labor efficiency, for each country i in each year t. Following Caselli and Coleman (2006), when a 

percent increase in GDP per capita is associated with a larger increase in skilled labor efficiency 

than unskilled labor efficiency, I call this evidence of a relative skill bias in cross-country 

technology differences. Conversely, when a percent increase in GDP per capita is associated 

with an increase in skilled labor efficiency but is also associated with a decrease in unskilled 

labor efficiency, I call this evidence of an absolute skill bias in cross-country technology 

differences.  

I perform multiple effective cross-sectional regressions of log(As) on log(y) (equation (8)) and of 

log(Au) on log(y) (equation (9)) for all countries i in each time period t in order to get yearly 

estimates of the respective coefficients on log(y).  

(8) log(𝐴𝑠,𝑖) = 𝜌0 + 𝜌1 log(𝑦𝑖) + 𝜀𝑖  for each   𝑡 = 1950, … ,2014 

(9) log(𝐴𝑢,𝑖) = 𝜆0 + 𝜆1 log(𝑦𝑖) + 𝜀𝑖   for each   𝑡 = 1950, … ,2014 

Given that both the dependent and independent variables are log transformed, I can interpret the 

resultant coefficient as the percent increase that is associated with a 1% increase in y. If 𝜌1 >

𝜆1 ≥ 0, then a 1% increase in y is associated with a relatively larger percent increase in As 

compared to Au – that is, the relative skill bias. If 𝜌1 > 0 while 𝜆1 < 0, then a 1% increase in y is 

associated with an increase in As and a decrease in Au – that is, the absolute skill bias. 

Figures 5 and 6 plot the coefficient estimates of 𝜌1 and 𝜆1 from estimating the regression 

equations (8) and (9) over time, respectively. We can see that the 𝜌1 coefficient from the As 

regression is always larger than the 𝜆1 coefficient from the Au regression - that is, that a 1% 
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increase in GDP per capita is associated with a larger increase in As than in Au across my entire 

sample. Throughout the entire sample, the 𝜌1 coefficient from the As regression is positive and 

statistically significantly different from 0 at the 5% significance level, although its magnitude is 

generally decreasing over time (especially nearly monotonically so since the mid 1960’s). The 𝜆1 

coefficient from the Au regression is not statistically significantly different from 0 at the 5% level 

from 1950 to approximately 1990. From 1990 onwards, the 𝜆1 coefficient becomes negative and 

statistically significantly different from 0 at the 5% level and increases in magnitude, become 

more negative, over the remaining time period. 

 

I conclude that, up to 1990, there is persistent evidence of a relative skill bias in cross- country 

technology differences in my sample. From 1991 onwards, there is persistent evidence of an 

absolute skill bias in cross country technology differences in my sample, as the 𝜌1 coefficient 

remains positive (albeit moderately attenuated in magnitude), and as the  𝜆1 becomes 

significantly negative. By way of this analysis, I can confirm the skill bias findings in Caselli and 

Coleman (2006) that, contrary to the implications of the single TFP framework, richer countries 

do not simply use all inputs more effectively and poorer countries do not simply use all inputs 

less effectively. Rather, the empirical evidence suggests that richer countries use skilled labor at 

least relatively more efficiently than poorer countries, and that poorer countries use unskilled 

labor at least relatively more efficiently than richer countries.  

B.i. Deconstructing the Skill Bias Result 

What generates the observed skill bias results in cross-country technology differences? Given 

how this specification is closed, it is the case that 𝐴𝑠/𝐴𝑢 is determined by equation (3). This is to 

say that my calculated values of As and Au arise from the theoretical assumption that factors of 

production are paid their marginal product, and are therefore determined by the observed wage 

ratio and the observed labor endowments.  
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For tractability, consider the log-transformed version of equation (3)  

(10) log (
𝑤𝑠

𝑤𝑢
) = σ log (

𝐴𝑠

𝐴𝑢
) + (σ − 1) log (

𝐿𝑠

𝐿𝑢
) 

For any fixed 𝐴𝑠/𝐴𝑢, the relationship between 𝐿𝑠/𝐿𝑢 and 𝑤𝑠/𝑤𝑢 is negative, as countries with 

more skilled labor have a lower skilled-wage premium, and conversely countries with less skilled 

labor have a higher skilled-wage premium. Indeed, the theoretical model predicts a strong 

negative relationship between  𝐿𝑠/𝐿𝑢 and 𝑤𝑠/𝑤𝑢 (specifically, with my value of σ =  0.286, the 

slope of the line is -0.714 in log-space). Figure 7 plots this implied theoretical relationship. 

 

To evaluate this theoretical prediction, I estimate effective cross-sectional regressions for each 

year in my sample of the form 

(11) log (
𝑤𝑠,𝑖

𝑤𝑢,𝑖
) = ϕ0 + ϕ1 log (

𝐿𝑠,𝑖

𝐿𝑢,𝑖
) + ε   for each   𝑡 = 1950, … ,2014 

Figure 8 plots the estimates of the ϕ1 coefficient over time. One can see that the estimated 

relationship between relative wages and relative labor supplies is strictly flat - that is to say, the  

𝜙1 coefficient is never statistically significantly different from 0 at the 5% level at any point in 

time over my sample.  

Therefore, we are faced with a situation where the theoretical model predicts a strong negative 

relationship between relative wages and relative labor endowments, yet the data shows 

effectively no strong relation. For tractability, this reality is depicted in Figure 9.  
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Following Caselli and Coleman (2006), so as to resolve the disjunction between the theoretically 

predicted relationship and the observed empirical relationship illustrated in Figure 9, it must be 

the case that 𝐿𝑠/𝐿𝑢 and 𝐴𝑠/𝐴𝑢 are systemically positively related - that is, countries with a 

relatively high endowment of skilled labor 𝐿𝑠/𝐿𝑢 also have a high relative skilled labor 

efficiency 𝐴𝑠/𝐴𝑢, and conversely that countries with a relatively low endowment of skilled labor 

𝐿𝑠/𝐿𝑢 also have a low relative skilled labor efficiency 𝐴𝑠/𝐴𝑢.  

In congruence with Caselli and Coleman (2006), we can now see the sources and patterns of the 

persistent skill bias evident in my data. As described above, 𝐿𝑠/𝐿𝑢  and 𝐴𝑠/𝐴𝑢 must be 

systematically positively related. From Table 2, we can surmise that 𝐿𝑠/𝐿𝑢 is positively related 

with GDP per capita y. From the estimated coefficients in equations (8) and (9) presented in 

Figures 5 and 6 respectively, we can surmise that 𝐴𝑠/𝐴𝑢 is positively related with GDP per 

capita y. Conclusively, wealthier countries have higher relative skilled labor endowments and use 

skilled labor relatively more efficiently, and conversely poorer countries have relatively high 

unskilled labor endowments use unskilled labor relatively more efficiently. While the TFP 

approach posits a single multiplicative technical efficiency which is empirically positively 

related to GDP per capita, using data on skilled wage premiums and constructed indices of labor 

supplies, I show and conclude that this is not the case. Rather, countries at different income 

levels are more or less technically efficient at using their factors of production, and this 

efficiency is related to the relative abundance of the factor of production.  

C. The Model of Technology Choices 

How can we rationalize a country’s technology choice of a specific 𝐴𝑢 and 𝐴𝑠? In order to 

provide an economic explanation for the aforementioned pattern of technology skill bias present 

in my data, I employ the model proposed by Caselli and Coleman (2006) which incorporates 
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both an endogenous “appropriate choice” feature and a frictional “barriers to technological 

adoption” feature. The appropriate choice aspect emphasizes the endogenous relationship 

between technology choice and factor endowments, and the barriers to adoption aspect focuses 

on the plausible cross-country (and cross-time) variation in the capacity of countries to adopt and 

employ new technologies.  

In each country at each point in time, firms choose not only the amount of skilled and unskilled 

labor to use, but also choose a particular production method to employ the skilled and unskilled 

labor. The set of available production methods is characterized by all possible choice pairs of the 

technologies (𝐴𝑢, 𝐴𝑠). From all possible choice pairs of the technologies, I restrict attention to 

those which are non-dominated by supposing that no rational actor would choose a technology 

pair (𝐴𝑢, 𝐴𝑠) when there exists another possible pair (𝐴𝑢
′ , 𝐴𝑠

′ ) such that 𝐴𝑢
′ > 𝐴𝑢 and 𝐴𝑠

′ > 𝐴𝑠. 

This set of non-dominated technology choices is the country’s technology frontier. Such a 

frontier space is illustrated in Figure 10, where the x-axis measures the efficiency of unskilled 

labor 𝐴𝑢 and the y-axis measures the efficiency of skilled labor 𝐴𝑠, where Country A and 

Country B have different technology frontiers, and where 𝐶𝑎 and 𝐶𝑎
′  represent particular 

technology pair choices for Country A and where 𝐶𝑏 and 𝐶𝑏
′  represent particular technology pair 

choices for Country B. 

For a rational firm, the profit-maximizing production technology pair depends on the choice of 

factor inputs, which in turn depends on factor prices, which in turn depends on the relative 

available supply of the factors of production. Therefore, given that countries vary in the relative 

abundance of the factors of production, they will ultimately vary in the profit-maximizing 

technology pair choice (this can be seen in the aforementioned positive relation between 𝐿𝑠/𝐿𝑢 

and 𝐴𝑠/𝐴𝑢). Therefore, where along a country’s specific non-dominated technology frontier the 

optimal choice lies depends on the country’s particular relative labor endowments (that is, the 

“appropriate choice” aspect). For example, in Figure 10, suppose that Country A is relatively 

unskilled-labor abundant - then, we can expect an optimal technology pair choice to consist of 

relatively more unskilled-labor augmenting technology, such as point 𝐶𝑎. Conversely, suppose 

that Country A is relatively skilled-labor abundant - then we can expect an optimal technology 

pair choice to consist of relatively more skilled-labor augmenting technology, such as 𝐶𝑎
′ . 
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By allowing technology frontiers to be country specific, we suppose that the set of possible 

technology pairs accessible to each country varies. The size of a country’s available technology 

space from which it can choose is determined by its ability to access and employ new technology 

(that is, the “barriers to technology adoption” aspect). Therefore, where in the 𝐴𝑢 − 𝐴𝑠 space a 

country’s technology frontier lies with respect to the origin is inversely related to the amount of 

barriers to technology adoption it experiences. As illustrated in Figure 10, in this model, Country 

B experiences fewer barriers to adoption vis-à-vis Country A.  

Employing a model which combines the aforementioned appropriate choice aspect and barriers 

to adoption aspect allows me to mechanistically rationalize the persistent skill bias in cross-

country technology differences seen across country and across time. In understanding how these 

two mechanisms interact, consider Figure 11. Assume that Country A is poor and relatively 

unskilled-labor abundant, and Country B is wealthy and relatively skilled-labor abundant. When 

the technology frontiers are sufficiently far away as in Figure 11(a), the barriers to adoption 

effect will dominate, and the optimal technology choice pair for Country B,  𝐶𝑏
⋆ will display an 

absolutely higher level of both the unskilled and skilled labor technologies Au and As vis-à-vis 

the optimal technology choice pair for Country A, 𝐶𝑎
⋆ (that is, a case of relative skill bias). When 

the technology frontiers are sufficient close as in Figure 11(b), the appropriate choice effect will 

dominate, and we will observe in Country B’s optimal choice 𝐶𝑏
⋆ a higher level of the skilled 

labor technology As and we will observe in Country A’s optimal technology choice 𝐶𝑎
⋆ a higher 

level of the unskilled labor technology Au (that is, a case of absolute skill bias).  

 

Following Caselli and Coleman (2006), for each country in each year, the economy is 

characterized by a larger number of competitive firms. Firms employ unskilled labor Lu, skilled 

labor Ls, and capital k. Firms are price-takers regarding the wage rate of unskilled labor wu, the 

wage rate of skilled labor ws, and the rental rate of capital r. As Caselli and Coleman (2006) 

illustrate, the novel element of the model at hand is the assumption that in addition to choosing 

the factor inputs, firms also choose the production technologies (𝐴𝑢, 𝐴𝑠) from the set of feasible 
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technologies available in that country in that year. They represent, as will I, the technology 

frontier with the functional form  

(12)  (𝐴𝑠)ω + γ(𝐴𝑢)ω ≤ 𝐵 

where parameters ω > 0 and γ > 0 dictate the curvature and trade-off between As and Au, and 

𝐵 > 0 represents the ‘height’ of a particular frontier.  

For tractability, we can succinctly conceptualize the representative firms’ problem for each 

country i in each year t, as the following profit maximization problem subject to the technology 

frontier constraint:  

(13)  𝜋(𝑤𝑢, 𝑤𝑠, 𝑟) = max
𝐿𝑢,𝐿𝑠,𝑘,𝐴𝑢,𝐴𝑠

𝑘𝛼 [(𝐴𝑢𝐿𝑢)𝜎 + (𝐴𝑠𝐿𝑠)𝜎]
1−𝛼

𝜎 − 𝑤𝑢𝐿𝑢 − 𝑤𝑠𝐿𝑠  −  𝑟𝑘 

 s.t. (𝐴𝑠)𝜔 + 𝛾(𝐴𝑢)𝜔 ≤ 𝐵 

D. Technology Frontiers 

D.i. Backing out the Parameters 

Following Caselli and Coleman (2006), I solve for the ω, γ, and B parameters which characterize 

the technology frontier that rationalizes a country’s implied choice pair of As and Au. The γ and B 

parameters are country and year specific. The curvature parameter ω is left to be constant across 

all countries in a given year, but can vary from year to year.  

Specifically, I make use of the firms first-order condition with respect to Au which at optimum, 

reduces to7 

(14)  (
𝐴𝑠

𝐴𝑢
)

ω−σ
= γ (

𝐿𝑠

𝐿𝑢
)

σ
 

I can rewrite equation (14) log-transformed in order to perform effective cross-sectional 

regressions for all countries i in each time period t 

(15)  log (
𝐴𝑠,𝑖

𝐴𝑢,𝑖
) =

1

ω−σ
log(γ𝑖) +

σ

ω−σ
log (

𝐿𝑠,𝑖

𝐿𝑢,𝑖
)    for each   𝑡 = 1950, … ,2014 

Using equation (15), I regress 𝑙𝑜𝑔(𝐴𝑠,𝑖/𝐴𝑢,𝑖) on 𝑙𝑜𝑔(𝐿𝑠,𝑖/𝐿𝑢,𝑖) for each time period t. Then, 

given the coefficient estimate on 𝑙𝑜𝑔(𝐿𝑠,𝑖/𝐿𝑢,𝑖) and my calibrated value of σ ≈ 0.286, I back out 

the value of ω annually for each year t. Then, using the regression residual, I recover the implied 

value of γ for each country i in each year t. Finally, with estimates of ω and γ and a country’s 

choice of Au and As, using equation (12), I back out B for each country i in each year t.  

 

 
7 For the derivation, see Appendix C. 
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D.ii. Frontier Parameter Summary Statistics 

 

Table 3 presents summary statistics of the ω, γ, and B parameters just calculated.  

Of particular note, my estimate of ω is nearly identical to the estimate of 0.41 calculated from the 

single cross-section used in Caselli and Coleman (2006), and is constant and well bounded 

across my sample from year to year. Additionally, the frontier height parameter B has a 

significantly large range over my sample across countries and across time (an observation of 

particular importance to the following section on the evolution of technology frontiers).  

D.iii. Frontiers and Their Evolution 

To explore how technology frontiers evolved over time, I first employ the frontier height 

parameter B as an indicative measure. To this end, Figure 12 plots average heights of frontiers by 

region over time.  
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Generally, the picture of economic progress and growth patterns that Figure 12 paints is 

expected. North America has had the highest frontiers on average across the entire time period, 

with Europe & Central Asia closely following throughout. Both South Asia and East Asia & 

Pacific have experienced the most clear frontier growth and expansion, especially since the 

1980’s. The Middle East & North Africa and Latin America & the Caribbean have experienced 

very moderate frontier expansion, but have remained more or less stagnant especially from the 

1970’s to the 2000’s. Lastly, Sub-Saharan Africa has been essentially flat, exhibiting no 

significant technology frontier growth and expansion, over the entire time period.  

Further, as a starting point of comparison of technology frontiers, using my data I replicate in 

Figure 13 a central figure in the Caselli and Coleman (2006) paper, which features the scatter 

plot space of 𝑙𝑜𝑔(𝐴𝑢) and 𝑙𝑜𝑔(𝐴𝑠) and plots the technology frontier equations of three 

representative countries - Italy, Argentina, and India - for their single cross-sectional year 1988. 

The conclusions they draw in their analysis are analogous to the conclusions I can draw here. A 

poorer country, such as India, operates on a frontier that is significantly inside that of a wealthier 

country, such as Italy, and a more ‘middle-income’ country such as Argentina operates on a 

technology frontier in between the high-income and low-income countries. Importantly, here in 

Figure 13, one can concretely visualize how the appropriate choice and barriers to adoption 

margins of technological choice nest together. At a specific point in time, a country’s technology 

pair choice of a specific (𝐴𝑢, 𝐴𝑠) is an endogenous result determined by their endowments of 

unskilled labor and skilled labor, chosen to augment the relatively more abundant factor - that is, 

the appropriate choice margin. But of course, this appropriate technology choice arises from, and 

is conditional on, a particular technology space and set of feasible technology choices - that is, 

the barriers to adoption margin. We can see in Figure 13 that poorer countries consistently have 

lower technology frontiers, and likewise smaller technology choice spaces, because they face 

comparatively larger barriers to technology adoption.  
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While much can be gleaned from understanding the characteristics of the global technology 

space from a cross-sectional view at a particular point in time, I can go beyond this. A significant 

advantage of my compiled dataset and approach is not only the expanded entity size, but also the 

time-series component. Now, I can document and evaluate not only the state of frontiers at a 

given point in time, but I can also highlight the evolution of frontiers across time. Figure 14 plots 

the evolution of the space of frontiers by region in decade increments from 1960 to 2010.  

Generally, the picture of economic progress and growth patterns that the evolution of these 

frontiers paints is again expected as it broadly squares quite well with the literature and stylized 

facts on realized economic growth over the second half of the 20th and early 21st centuries. 

North America has remained at the fore of the technology frontier space, and Europe & Central 

Asia has progressed to obtain a roughly equivalent frontier to that of North America. 

Tremendous growth in the frontier space has been achieved by South Asia, especially since the 

1980’s. Slightly attenuated but nevertheless substantive growth has been seen in East Asia & 

Pacific, again especially since the 1980’s. Some moderate frontier growth can be seen in the 

Middle East & North Africa, particularly from the 1990’s onward. The Latin America & 

Caribbean technology frontier, had been largely stable, but some modest frontier growth can be 

seen since the 2000’s. Lastly, the technology frontier space of Sub-Saharan Africa has remained 

essentially constant, experiencing no significant technology frontier expansion.  

E.  Robustness Checks 

Here I perform some parameter robustness checks to establish the durability of my analysis and 

conclusions.  

E.i. Variation of the Elasticity of Substitution 

Following Caselli and Coleman (2006), I set σ =  0.286 so that the elasticity of substitution 
1

1−σ
 

between skilled and unskilled workers is 1.4, a value obtained from the estimation work in Katz 

and Murphy (1992). This specific elasticity estimate appears to be reasonable and in congruence 

with the literature - Autor et al. (1998) confirm that the elasticity is likely to be bounded between 

1 and 2, settling on 1.4 as a consensus estimate; Ciccone and Peri (2005) find an elasticity 

ranging from 1.2 to 2, with their preferred estimate being 1.5; Autor et al. (2008) find an 

elasticity ranging from 1.37 to 2.48, settling on an aggregate estimate of 1.62. While this 

elasticity estimate seems plausible and grounded, one could be concerned that my results of 

persistent cross-country and cross-time skill bias are in some way driven by the particular choice 

of the elasticity of substitution.  

To this end, I re-estimate equations (4) and (5) and back out the respective efficiency parameters 

Au and As for a host of elasticity estimates ranging from 1.1 (σ = 0.095) to 2.5 (σ = 0.6). As the 

elasticity of substitution tends toward 1, skilled and unskilled labor become more imperfect 

substitutes, and I see progressively more substantial evidence of an absolute skill bias - that is, an 

increase in y is associated with an increase in the skilled labor efficiency, and an increase in y is 

associated with a decrease in the unskilled labor efficiency. As the elasticity of substitution tends 

toward 2.5, skilled and unskilled labor become more perfect substitutes, and I see progressively 

more substantial evidence of a relative skill bias - that is, while an increase in y is positively 

related to both As and Au, it brings about a comparatively larger increase in As vis-à-vis Au. 
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Nevertheless, we observe skill bias in all cases considered, and thusly on the whole, my results 

remain robust and my conclusions unchanged.8 

E.ii. Heterogeneity in the Capital Share of Income 

Following long-standing convention, I set the capital share of income α = 1/3. Despite the 

salience of this convention, recent work has revealed considerable cross-country and cross-time 

variation (see Bernanke and Gurkaynak, 2001; Gollin, 2002; Caselli and Feyrer, 2007). To this 

end, I use data on the labor share of income from the Penn World Table to get country-year 

specific values of the capital share of income, i.e. for country i in year t,  

(16)  α𝑖,𝑡 = 1 − Labor Share of Income 𝑖,𝑡 

Using these new values of αi,t, I re-estimate equations (4) and (5) and back out the respective 

efficiency parameters Au and As. When allowing for cross-country and cross-time variation in the 

capital share of income, I see strong evidence of relative skill bias throughout most of my sample 

until the early 2000’s, at which point I begin to see strong evidence of an absolute skill bias. 

Again, on the whole, my results remain robust and conclusions unchanged.9 

V. Counterfactual Calculations, Development Accounting, and the Effects of Trade 

As shown above, I model a country’s technology choice (𝐴𝑢, 𝐴𝑠) as arising from an aspect of 

appropriate technology choice and from an aspect of barriers to technology adoption. In essence, 

conditional on the particular state of barriers faced at the time, a country “chooses” its 

technology as a function of its labor endowments. Having shown above that barriers to adoption 

do exist, as poorer country’s frontiers lie consistently within those of richer countries, and that 

there has been considerable movement of frontiers and elimination of barriers in certain 

countries and regions of the world over time, I now investigate the contribution of barriers to 

technology adoption on the observed disparities in economic development and the wealth of 

nations. Particularly, I am concerned with the possible welfare gains to be realized from the total 

elimination of barriers to technology adoption, and assessing trade as a plausible causal factor 

that leads to the elimination of these barriers.  

A. The Counterfactual Removal of Barriers 

What are the possible gains to be realized from the total elimination of barriers? In an attempt to 

quantify this, I solve for what GDP per capita county i in year t could attain if it could choose its 

technology pair (𝐴𝑢, 𝐴𝑠) from the world technology frontier in that year.  

This is a two step process. First, I define the novel variable “technology space” for each country 

in each year as the area under its technology frontier curve. Given calculated parameter 

estimates, I can rewrite the technology frontier equation (12) at equality as  

 

 
8 For these results, see Appendix D. 
9 For these results, see Appendix D. 
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(17)   𝐴𝑠 = (𝐵 − γ𝐴𝑢
ω)

1

ω 

Then, I solve for θ, which is the root of equation (17), for each country in each year, defined as  

(18)  θ = {𝐴𝑢 ∈ 𝑅+: (𝐵 − γ𝐴𝑢
ω)

1

ω = 0} 

Given the nature and shape of the frontier function, there exists a single real positive root, which 

I define as the upper limit of the integration of the technology space. Accordingly, I define the 

technology space for a given country in a given year as  

(19)  Technology Space = ∫ (𝐵 − γ𝐴𝑢
ω)

1

ω𝑑𝐴𝑢
θ

0
 

which is the area under its frontier curve integrated from 0 to θ. 

Second, for each year, I find the country with the largest technology space, and define its 

function parameters (ω⋆, γ⋆, 𝐵⋆) as constituting the frontier function of the proverbial “world 

technology frontier” for the given year. Then, I solve the following constrained optimization 

problem,  

(20)  Optimal GDP per capita = max
𝐴𝑢,𝐴𝑠

  𝑘α[(𝐴𝑢𝐿𝑢)σ + (𝐴𝑠𝐿𝑠)σ]
1−α

σ  

           s.t.  𝐴𝑠
ω⋆

+ γ⋆𝐴𝑢
ω⋆

≤ 𝐵⋆ 

where each country in a given year, given its labor endowments, chooses its technical 

efficiencies (𝐴𝑢, 𝐴𝑠) from the world technology frontier in order to achieve the maximum 

possible GDP per capita.10 

Now, I can evaluate the output gains possible if all countries had unfettered access to the world 

technology frontier. Figure 15 plots the possible output gain (Optimal GDP per capita / Observed 

GDP per capita), from the removal of all barriers to adoption for the year 1988. I choose to 

present the data from 1988 in order to allow me to draw comparisons between my counterfactual 

calculations and those presented in Caselli and Coleman (2006). Figure 15 shows that substantial 

output gains could be realized from the removal of barriers to technology adoption, often by 

factors of 10 or more in particularly poor and underdeveloped countries. My results here are in 

line with those in Caselli and Coleman (2006) who find possible output gains of a factor of 6 in 

1988. My results are larger than those in Caselli and Coleman (2006), however this is due to my 

sample containing more middle- and low-income countries which were left out of their analysis, 

biasing their results as an effective lower-bound estimation.  

Further, I can investigate how the possible output gain from the removal of barriers has evolved 

over time. Figure 16 plots the distributions of the output gain over my sample in 5-year 

increments. There are a few notable observations from this figure. First, the middle interquartile 

range of the gains from barrier removal are generally well bounded between factors of 2 to 8, and 

follow no discernible pattern over time. Second, and accordingly, the average output gain is quite 

 
10 For the proof that a solution to this problem exists and is unique, see Appendix E.  
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consistent across time, with a mean output gain factor of ≈ 6. Finally, the upper tail of the 

distribution of gains from removing barriers increases over time. This observation is no cause for 

concern and is in accordance with aforementioned stylized facts of economic progress. First, we 

know that the poorest countries have a relatively constant low GDP per capita and a constant low 

technology frontier over my sample. Second, we know that the richest countries have 

experienced significant growth in their GDP per capita and in their technology frontiers. 

Therefore, having defined the possible output gain as Optimal GDP per capita over Observed 

GDP per capita, we can see that for the poorest countries in my sample, the denominator 

(Observed GDP per capita) has remained relatively constant over time whereas the numerator 

(Optimal GDP per capita) has grown significantly over time, thereby explaining the widening of 

the distribution at the upper extreme.  

B. Development Accounting 

It is worth considering, in a development accounting sense, what fraction of the observed cross- 

country income variation can be explained by factor endowments, and what fraction is due to 

barriers to technology adoption. The percent of variation in cross-country income due to barriers 

to technology adoption can be calculated for a given year as 

(21)  % of Variation due to Barriers = 100 × (1 −
sd[log(Optimal GDP per capita)]

sd[log(𝑦)]
) 

Table 4 presents the standard deviation of the log of Observed GDP per capita y, the standard 

deviation of the log of Optimal GDP per capita, and the percent of variation in cross-country 

income due to barriers to technology adoption (as calculated according to equation (21)). While 

decreasing over time, barriers to technology adoption explains on average 48% of observed 

cross-country income variation over my sample.  
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C. The Effects of Trade on Barriers to Adoption 

The potential gains to welfare from reducing barriers to adoption are large, and barriers to 

adoption can explain a significant fraction of observed cross-country variation in GDP per capita. 

Given this, I now pursue a preliminary analysis evaluating the causal impact of general economic 

integration – as measured by trade volume – on reducing barriers to technology adoption.  

C.i. Motivating Idea 

Arguably the defining feature of the post-Second World War global economy has been the 

expansion of global trade and interconnectedness. Much research has been done evaluating the 

multi-faceted effects of increased international trade throughout the second half of the 20th 

century.  

While a substantive portion of research in the literature has generally focused on the effects of 

trade on economic growth, here I instead hypothesize that trade has a causal impact on a 

country’s barriers to technology adoption. Specifically, in the context of this analysis, increases 

in trade reduce barriers to technology adoption, increasing a country’s available technology 

space, yielding a more efficient non-dominated appropriate technology choice given a country’s 

factor endowments, and therefore increasing a country’s income. This hypothesized model of the 

effects of trade is simply diagrammatically represented in Figure 17.  

 

 

C.ii. Methodology and Data 

I wish to estimate the effect of trade on a country’s technology space with an equation of the 

form 

(22)  log(Technology Space
𝑖𝑡

) = ζ + ψ × log(trade𝑖𝑡) + μ𝑖 + δ𝑡 + ε𝑖𝑡 

where Technology Spaceit is the technology space for country i at time t, tradeit is the sum of 

bilateral trade flows for country i at time t, where μi are country fixed effects, where δt are time 

fixed effects, and where εit is the idiosyncratic error term. The parameter of interest is ψ, which I 

hypothesize to be greater than zero (i.e., an increase in trade volume increases a country’s 

technology space). However, there is a substantial problem – equation (22) cannot be identified 

due the endogeneity of trade and concerns of reverse causality. Therefore, in order to estimate 

the effect of trade on technology space, I employ an instrumental variable strategy to address 

these issues of endogeneity and reverse causality.  
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In their influential paper, Frankel and Romer (1999) use a bilateral gravity trade flow equation to 

construct a particular geographic instrument for assessing the effect of trade on income. 

However, their instrument is time-invariant (therefore only applicable in cross-sectional 

analyses), and their results are not robust to controlling for time-invariant omitted variables such 

as distance from the equator and land area covered by tropics (see Rodriguez and Rodrik, 2001). 

Feyrer (2009b) also assesses the effect of trade on income during the period 1960-1995, but 

solves the problems of Frankel and Romer (1999) by using the exogenous heterogeneity in 

benefits arising from changes in the importance of air transportation vis-à-vis sea transportation 

to construct a time-variant geographic instrument, and can therefore use the time-series variation 

to control for time-invariant country fixed effects. Similarly, Pascali (2017) assesses the effect of 

trade on economic development during the period 1870-1913 using a time-variant geographic 

instrument à la Feyrer (2009b), but using the advent and evolution of steamship transportation. 

Magistretti and Tabellini (2019) assess the effect of trade and economic integration on 

democracy, and construct a time-variant geographic instrument à la Feyrer (2009b), but over a 

longer time-period with more recent data (1950-2015), and make technical improvements in the 

construction of the instrument, such as including country and year fixed effects in the bilateral 

gravity trade flow equation.  

For my two-stage least squares instrumental variation strategy, I estimate the equations  

(23)  log(trade𝑖𝑡) = χ + τ × log(trade instrument𝑖𝑡) + ξ𝑖 + η𝑡 + ε𝑖𝑡 

(24)  log(Technology Space
𝑖𝑡

) = ζ + ψ × log(trade𝑖𝑡
̂ ) + μ𝑖 + δ𝑡 + ε𝑖𝑡 

where equation (23) is the first stage reduced form equation of the endogenous trade variable in 

terms of all exogenous variables, and where equation (24) is the second stage structural equation 

regressing technology space on the instrumented trade values from the first stage regression.  

For my instrumental variable estimation, I use the trade measure and trade instrument con- 

structed by Magistretti and Tabellini (2019). Their observed trade measure and trade instrument 

data takes the form of an unbalanced panel of 212 countries for the years 1950-2015. I match 

their dataset with my unbalanced panel on technology space for 108 countries for the years 1950-

2014 to produce a final unbalanced panel of 86 countries for the years 1950-2014. To focus on 

longer-term effects, I follow Feyrer (2009b) and Magistretti and Tabellini (2019) and only keep 

data observations at 5-year intervals, so that the final panel dataset consists of measures of 

technology space, trade volume, and the trade instrument for 86 countries over 13 time periods 

from t = 1 (1950) to t = 13 (2010).  

C.iii. Instrument Relevance and Exogeneity 

As previously noted, concerns of endogeneity and reverse causality reasonably abound when 

considering estimating the causal effect of trade on a country’s technology space. These concerns 

inform my desire to use an instrumental variable estimation approach to isolate the exogenous 

component of the trade volume measure, and thusly use this exogenous component of trade to 

attain unbiased estimates of the effects of trade on technology space. However, a few conditions 

concerning the instrument must be met in order for a two-stage least squares instrumental 

variable estimation to be a valid and preferable approach – namely satisfying instrument 
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relevance and instrument exogeneity. Instrument relevance is the condition that Corr(trade 

instrument𝑖𝑡, trade𝑖𝑡) ≠ 0, which is to say that my instrumental variable must be strongly related 

to my endogenous regressor. Instrument exogeneity is the condition that Corr(trade 

instrument𝑖𝑡, 𝜀𝑖𝑡) = 0, which is to say that my instrumental variable must be exogenous and 

therefore uncorrelated with the error term. If the instrumental variable has no independent effect 

on technology space and satisfies the instrument relevance and instrument exogeneity conditions, 

then I can conclude that the instrument is valid and can be used to obtain unbiased and consistent 

estimates of my parameter of interest, ψ.  

The instrument relevance condition can be directly tested. Table 5 presents the first stage 

regression (equation (23)) controlling for country and time fixed effects, with standard errors 

clustered at the country level. In the first stage, we see evidence that the trade instrument appears 

to be relevant and valid, with the coefficient point-estimate being statistically significantly 

different from 0 at the 1% level. Nevertheless, even if the instrument appears to be relevant, it 

may still be the case that the instrument is a so-called “weak instrument.” The issue of weak 

instruments is problematic in obtaining consistent and unbiased estimates, as small correlations 

between the instrument and the error term can cause large inconsistencies and bias in the 

parameter estimates if the instrument is also weakly related with the explanatory variable. 

Therefore, following the commonly used rule of thumb (see Staiger and Stock, 1997; Stock and 

Yogo, 2002), I report the F-statistic from the first stage regression in Table 5, which satisfies the 

rule of thumb that the instrument is not weak if F > 10.  

However, the instrument exogeneity condition cannot be directly tested as it concerns the un- 

observed residual. In the case at hand, instrument exogeneity requires that the trade instrument is 

exogenous and uncorrelated with omitted variables, and only affects a country’s technology 

space through trade volume. I follow the reasoning proposed in Feyrer (2009b) and Magistretti 

and Tabellini (2019) and posit that it is reasonable to assume exogeneity of the trade instrument. 

Indeed, the rise of air transport vis-à-vis sea transport is reasonably an exogenous shared 
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technological advancement which generated heterogeneous variation that is exogenous to any 

particular country. As noted by Feyrer (2009b) and Magistretti and Tabellini (2019), given the 

plausibly exogenous trade instrument and the inclusion of country and time fixed effects 

afforded by the panel data, the possible non-trade channels through which the trade instrument 

can act on technology space are extremely limited to particular time-varying flows, such as 

migration and foreign direct investment (however, as will be shown, changes in population do 

not drastically bias the estimation of the ψ parameter). Accordingly, it may be fruitful to interpret 

results as an upper-bound measure of the effect of economic integration/globalization, rather 

than strictly trade in goods and services.  

C.iv. Results 

Table 6 presents the main results from the second stage regression (that is, equation (24)) con- 

trolling for country and time fixed effects, with standard errors clustered at the country level. Of 

primary interest is the coefficient on log(trade), significant at the 5% level, which indicates that a 

1% increase in trade volume brings about approximately a 0.37% increase in technology space. 

The coefficient on log(trade) is greater than zero, as hypothesized, lending credence to my 

conjecture that an increase in trade produces a larger available technology space, and therefore 

constitutes an effective reduction in barriers to technology adoption. I posit these estimates are 

causal, unbiased, and robust. By using an instrumental variable estimation approach with a valid 

and exogenous instrument, I have addressed the issues of endogeneity and reverse causality. 

Additionally, given that I have panel data, I am able to control for country-specific time-invariant 

correlates (country fixed effects), and I am able to control for covariates which are constant 

across countries but vary over time (time fixed effects).  

 

C.v. Robustness Checks 

 

I entertain a variety of alternative specifications in order to evaluate the robustness of the 

primary regression results presented in Table 6. To this end, Table 7 presents a host of alternative 
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specification considerations performing the two-stage least squares estimation of equations (23) 

and (24).  

One may be concerned that wealthy countries which trade more are driving the positive relation- 

ship identified in Table 6. To address this concern, model (1) includes only non-OECD 

countries. The point estimate on log(trade) is attenuated, but is still of reasonable magnitude and 

statistically significant at the 5% level. One may be concerned that, following the dissolution of 

the Soviet Union in 1991, the subsequent entrance of all post-soviet states into my data set from 

1995 onwards may bias the positive result identified in Table 6. Accordingly, model (2) excludes 

all states which were part of the USSR. The coefficient on log(trade) is nearly identical to the 

primary result, and is statistically significant at the 5% level. While the primary result in Table 6 

controls for country fixed effects and time fixed effects, given the breadth of my data, I can also 

control for omitted factors related to differential trends across regions – that is, by controlling for 

region-by-time fixed effects. To this end, using the full sample of countries, model (3) includes 

region-by-time fixed effects. The coefficient on log(trade) is attenuated, but still of relevant 

magnitude and statistically significant at the 10% level. Finally, again using the full sample of 

countries and including region-by-time fixed effects, model (4) adds the additional control 

variable of the change in (log) population level (population data is from the Penn World Table 

(see Feenstra et al., 2015)). While the change in population enters significantly into the 

specification, the coefficient on log(trade) is nearly unchanged compared to the estimate in Table 

6 and is statistically significant at the 10% level.  

For a considerable number of countries towards the beginning of my sample, the constructed 

trade instrumental variable takes the value of 0. This means that, when log transformed, the 

observation is dropped from my regression analysis as log(0) is undefined. To this end, I present 

two alternative transformations to the simple log transformation in an attempt to recover and 

utilize these lost observations in my regression analysis. Models (5) and (6) present the case 

where the instrumental variable (IV) takes on the transformation log(IV + 1). Model (5) includes 

only country and time fixed effects, whereas model (6) adds region-by-time fixed effects and the 

change in (log) population. Again, the coefficient estimates are not drastically different and are 

still statistically significant. Models (7) and (8) present the case where the instrumental variable 

takes on the inverse hyperbolic sine transformation IHS(IV).11 Model (7) includes only country 

and time fixed effects, whereas model (8) adds region-by-time fixed effects and the change in 

(log) population. Once again, the coefficient estimates are not drastically different and are still 

statistically significant.  

 

 
11 That is: IHS(IV) = arsinh(IV) = log (IV + √IV2 + 1),  (see Burbidge et al., 1988). 
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VI. Conclusion 

Following the methodology and model implemented by Caselli and Coleman (2006), I expand 

their single cross-country analysis of 52 countries in 1988 into a large panel data analysis of 114 

countries over the years 1950-2014. I employ a constant elasticity of substitution production 

function that allows for imperfect substitution across two labor aggregates – skilled and unskilled 

la- bor. By constructing country-year specific labor series and combining that with across-

country and across-time estimates of skilled wage premiums, I confirm their main finding that 

richer countries are relatively better at using skilled labor and that poorer countries are relatively 

better at using unskilled labor. Moreover, I broaden and develop their main conclusion by 

finding that this reality of skill biased technology differences has been a consistent and pervasive 

feature globally for the second half of the 20th century and into the first decades of the 21st 

century. These results strongly indicate that the orthodox view that cross-country incomes vary 

by a single multiplicative TFP does not adequately characterize the technical efficiencies of 

countries. Moreover, it appears that the orthodox view that all that is required to remedy the 

observed cross-country income variation is to simply transfer the technology and technical 

efficiencies of richer countries to poorer countries, is both overly simplistic and not welfare 

maximizing.  

By employing the simple model outlined in Caselli and Coleman (2006) which combines an 

appropriate choice and a barriers to adoption aspect of technology choice in order to rationalize 

the calculated technical efficiency choices of countries, I construct annual country-year specific 

technology frontiers. I find that the evolution of these country-specific and region-specific 

technology frontiers over time broadly fits with the well-documented observed growth 

experiences over the second half of the 20th and early 21st centuries – North America and 

Europe remained at the world technology frontier; significant progress was made in South and 

East Asia; the Middle East and Latin America display attenuated growth followed by stagnation; 

Sub-Saharan Africa remains desperately behind. I exploit the nature of the simple model in 

Caselli and Coleman (2006) to investigate the contribution of barriers to technology adoption to 

the observed cross-country variation in income. I find that, while decreasing slightly, barriers to 

technology adoption can explain approximately 48% of the observed variation in cross-country 

income.  

Given the salience of barriers to technology adoption, I investigate the effect of trade on in- 

creasing a country’s available technology space (and thereby decreasing its barriers to 

technology adoption). I employ an instrumental variable estimation approach, controlling for 

country and time fixed effects (in addition to other controls), in order to uncover the causal effect 

of trade on technology space. I rely on the time-varying geography-based trade instrument 

constructed in Magistretti and Tabellini (2019), who use the heterogeneity arising from the 

benefits of air route transport vis-à-vis sea route transport to construct an exogenous predicted 

trade measure. Conclusively, I find that trade has a robust and statistically significant causal 

effect on a country’s technology space, with my estimates indicating that a 10% increase in trade 

volume gives rise to approximately a 3% increase in a country’s available technology space.  
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VII. Appendix A: Wages and Marginal Products 

 

Recall the production function: 

      𝑦 = 𝑘α[(𝐴𝑢𝐿𝑢)σ + (𝐴𝑠𝐿𝑠)σ]
1−α

σ  

 

Assuming that in equilibrium, factors of production are paid their marginal product, where 

skilled labor is paid wage ws and unskilled labor is paid wu, we can write the ratio of wages as  

 

      
𝑤𝑠

𝑤𝑢
=

𝑀𝑃𝐿𝑠

𝑀𝑃𝐿𝑢
=

𝜕𝑦

𝜕𝐿𝑠
𝜕𝑦

𝜕𝐿𝑢

 

 

First, I find the marginal product of unskilled labor, Lu: 

 

       
∂𝑦

∂𝐿𝑢
=

∂

∂𝐿𝑢
{𝑘α[(𝐴𝑢𝐿𝑢)σ + (𝐴𝑠𝐿𝑠)σ]

1−α

σ  } 

      = 𝑘α 1−α

σ
[(𝐴𝑢𝐿𝑢)σ + (𝐴𝑠𝐿𝑠)σ]

1−α

σ
−1σ(𝐴𝑢𝐿𝑢)σ−1𝐴𝑢 

     ⇔
∂𝑦

∂𝐿𝑢
= 𝑘α(1 − α)[(𝐴𝑢𝐿𝑢)σ + (𝐴𝑠𝐿𝑠)σ]

1−α

σ
−1(𝐴𝑢𝐿𝑢)σ−1𝐴𝑢 

 

Similarly, I find the marginal product of skilled labor, Ls: 

 

          
∂𝑦

∂𝐿𝑠
=

∂

∂𝐿𝑠
{𝑘α[(𝐴𝑢𝐿𝑢)σ + (𝐴𝑠𝐿𝑠)σ]

1−α

σ } 

     = 𝑘α 1−α

σ
[(𝐴𝑢𝐿𝑢)σ + (𝐴𝑠𝐿𝑠)σ]

1−α

σ
−1σ(𝐴𝑠𝐿𝑠)σ−1𝐴𝑠  

     ⇔
∂𝑦

∂𝐿𝑠
= 𝑘α(1 − α)[(𝐴𝑢𝐿𝑢)σ + (𝐴𝑠𝐿𝑠)σ]

1−α

σ
−1(𝐴𝑠𝐿𝑠)σ−1𝐴𝑠  

 

I set wages equal marginal products and solve:  

 

            
𝑤𝑠

𝑤𝑢
=

∂𝑦

∂𝐿𝑠
∂𝑦

∂𝐿𝑢

=
𝑘α(1−α)[(𝐴𝑢𝐿𝑢)σ+(𝐴𝑠𝐿𝑠)σ]

1−α
σ

−1(𝐴𝑠𝐿𝑠)σ−1𝐴𝑠

𝑘α(1−α)[(𝐴𝑢𝐿𝑢)σ+(𝐴𝑠𝐿𝑠)σ]
1−α

σ
−1(𝐴𝑢𝐿𝑢)σ−1𝐴𝑢

 

     =
(𝐴𝑠𝐿𝑠)σ−1𝐴𝑠

(𝐴𝑢𝐿𝑢)σ−1𝐴𝑢
 

     =
𝐴𝑠

σ𝐿𝑠
σ−1

𝐴𝑢
σ𝐿𝑢

σ−1  

      ⇔
𝑤𝑠

𝑤𝑢
= (

𝐴𝑠

𝐴𝑢
)

σ
(

𝐿𝑠

𝐿𝑢
)

σ−1
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VIII. Appendix B: Closed-Form Solutions 

 

Recall the production function 

                 𝑦 = 𝑘𝛼[(𝐴𝑢𝐿𝑢)𝜎 + (𝐴𝑠𝐿𝑠)𝜎]
1−𝛼

𝜎  

 

and the wage-ratio equation  

     
ws

wu
= (

As

Au
)

σ
(

Ls

Lu
)

σ−1
 

 

I will begin by solving for Au. First, I rearrange the wage-ratio equation. 

 

     
𝑤𝑠

𝑤𝑢
= (

𝐴𝑠

𝐴𝑢
)

σ
(

𝐿𝑠

𝐿𝑢
)

σ−1
 

     
𝑤𝑠

𝑤𝑢
=

𝐴𝑠
σ

𝐴𝑢
σ

𝐿𝑠
σ

𝐿𝑢
σ

𝐿𝑢

𝐿𝑠
 

       𝐴𝑢
σ 𝑤𝑠

𝑤𝑢

𝐿𝑠

𝐿𝑢
=

𝐴𝑠
σ𝐿𝑠

σ

𝐿𝑢
σ  

    𝐴𝑢
σ (

𝑤𝑠𝐿𝑠

𝑤𝑢𝐿𝑢
) = (

𝐴𝑠𝐿𝑠

𝐿𝑢
)

σ
 

 

Then, I rearrange the production function.  

        𝑦 = 𝑘α[(𝐴𝑢𝐿𝑢)σ + (𝐴𝑠𝐿𝑠)σ]
1−α

σ  

    (𝑦𝑘−α)
σ

1−α = (𝐴𝑢𝐿𝑢)σ + (𝐴𝑠𝐿𝑠)σ 

      𝑦
σ

1−α𝑘
−ασ

1−α = 𝐴𝑢
σ𝐿𝑢

σ + 𝐴𝑠
σ𝐿𝑠

σ 

       
𝑦

σ
1−α𝑘

−ασ
1−α

𝐿𝑢
σ = 𝐴𝑢

σ +
𝐴𝑠

σ𝐿𝑠
σ

𝐿𝑢
σ  

       
𝑦

σ
1−α𝑘

−ασ
1−α

𝐿𝑢
σ = 𝐴𝑢

σ + (
𝐴𝑠𝐿𝑠

𝐿𝑢
)

σ
 

 

Now, given the two rearranged forms 

 

   𝐴𝑢
𝜎 (

𝑤𝑠𝐿𝑠

𝑤𝑢𝐿𝑢
) = (

𝐴𝑠𝐿𝑠

𝐿𝑢
)

𝜎
   and  

𝑦
𝜎

1−𝛼𝑘
−𝛼𝜎
1−𝛼

𝐿𝑢
𝜎 = 𝐴𝑢

𝜎 + (
𝐴𝑠𝐿𝑠

𝐿𝑢
)

𝜎
 

 

 

I substitute the former into the latter and solve for Au 

 

    
𝑦

σ
1−α𝑘

−ασ
1−α

𝐿𝑢
σ = 𝐴𝑢

σ + 𝐴𝑢
σ (

𝑤𝑠𝐿𝑠

𝑤𝑢𝐿𝑢
) 

    
𝑦

σ
1−α𝑘

−ασ
1−α

𝐿𝑢
σ = 𝐴𝑢

σ [1 +
𝑤𝑠𝐿𝑠

𝑤𝑢𝐿𝑢
] 

    
𝑦

σ
1−α𝑘

−ασ
1−α

𝐿𝑢
σ = 𝐴𝑢

σ [
𝑤𝑢𝐿𝑢

𝑤𝑢𝐿𝑢
+

𝑤𝑠𝐿𝑠

𝑤𝑢𝐿𝑢
] 

    
𝑦

σ
1−α𝑘

−ασ
1−α

𝐿𝑢
σ = 𝐴𝑢

σ [
𝑤𝑢𝐿𝑢+𝑤𝑠𝐿𝑠

𝑤𝑢𝐿𝑢
]  
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        ⇔ 𝐴𝑢 =
𝑦

1
1−α𝑘

−α
1−α

𝐿𝑢
[

𝑤𝑢𝐿𝑢

𝑤𝑢𝐿𝑢+𝑤𝑠𝐿𝑠
]

1

σ
 

 

 

I solve for As in an identical fashion. First, I rearrange the wage-ratio equation. 

 

     
𝑤𝑠

𝑤𝑢
= (

𝐴𝑠

𝐴𝑢
)

σ
(

𝐿𝑠

𝐿𝑢
)

σ−1
  

     
𝑤𝑠

𝑤𝑢
=

𝐴𝑠
σ

𝐴𝑢
σ

𝐿𝑠
σ

𝐿𝑢
σ

𝐿𝑢

𝐿𝑠
  

       𝐴𝑢
σ 𝐿𝑢

σ

𝐿𝑠
σ

𝑤𝑠

𝑤𝑢
= 𝐴𝑠

σ 𝐿𝑢

𝐿𝑠
 

            𝐴𝑢
σ 𝐿𝑢

σ

𝐿𝑠
σ = 𝐴𝑠

σ 𝑤𝑢

𝑤𝑠

𝐿𝑢

𝐿𝑠
 

       (
𝐴𝑢𝐿𝑢

𝐿𝑠
)

σ
= 𝐴𝑠

σ (
𝑤𝑢𝐿𝑢

𝑤𝑠𝐿𝑠
) 

 

 

Then, I rearrange the production function in an analogous way. 

 

         𝑦 = 𝑘α[(𝐴𝑢𝐿𝑢)σ + (𝐴𝑠𝐿𝑠)σ]
1−α

σ  

    (𝑦𝑘−α)
σ

1−α = (𝐴𝑢𝐿𝑢)σ + (𝐴𝑠𝐿𝑠)σ 

      𝑦
σ

1−α𝑘
−ασ

1−α = 𝐴𝑢
σ𝐿𝑢

σ + 𝐴𝑠
σ𝐿𝑠

σ  

       
𝑦

σ
1−α𝑘

−ασ
1−α

𝐿𝑠
σ =

𝐴𝑢
σ𝐿𝑢

σ

𝐿𝑠
σ + 𝐴𝑠

σ 

       
𝑦

σ
1−α𝑘

−ασ
1−α

𝐿𝑠
σ = (

𝐴𝑢𝐿𝑢

𝐿𝑠
)

σ
+ 𝐴𝑠

σ 

 

Now, given the two rearranged forms  

 

    (
𝐴𝑢𝐿𝑢

𝐿𝑠
)

𝜎
= 𝐴𝑠

𝜎 (
𝑤𝑢𝐿𝑢

𝑤𝑠𝐿𝑠
)    and    

𝑦
𝜎

1−𝛼𝑘
−𝛼𝜎
1−𝛼

𝐿𝑠
𝜎 = (

𝐴𝑢𝐿𝑢

𝐿𝑠
)

𝜎
+ 𝐴𝑠

𝜎 

 

I substitute the former into the latter and solve for As. 

 

    
𝑦

σ
1−α𝑘

−ασ
1−α

𝐿𝑠
σ = 𝐴𝑠

σ (
𝑤𝑢𝐿𝑢

𝑤𝑠𝐿𝑠
) + 𝐴𝑠

σ 

    
𝑦

σ
1−α𝑘

−ασ
1−α

𝐿𝑠
σ = [

𝑤𝑢𝐿𝑢

𝑤𝑠𝐿𝑠
+ 1] 𝐴𝑠

σ 

    
𝑦

σ
1−α𝑘

−ασ
1−α

𝐿𝑠
σ = [

𝑤𝑢𝐿𝑢

𝑤𝑠𝐿𝑠
+

𝑤𝑠𝐿𝑠

𝑤𝑠𝐿𝑠
] 𝐴𝑠

σ 

    
𝑦

σ
1−α𝑘

−ασ
1−α

𝐿𝑠
σ = [

𝑤𝑢𝐿𝑢+𝑤𝑠𝐿𝑠

𝑤𝑠𝐿𝑠
] 𝐴𝑠

σ 

         ⇔ 𝐴𝑠 =
𝑦

1
1−α𝑘

−α
1−α

𝐿𝑠
[

𝑤𝑠𝐿𝑠

𝑤𝑢𝐿𝑢+𝑤𝑠𝐿𝑠
]

1

σ
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IX. Appendix C: The Representative Firm’s First Order Condition 

 

At optimum: 

            𝑦 = 𝐹(𝑘, 𝐴𝑢, 𝐿𝑢, 𝐴𝑠, 𝐿𝑠) 

   0 =
∂𝐹

∂𝑘
𝑑𝑘 +

∂𝐹

∂𝐴𝑢
𝑑𝐴𝑢 +

∂𝐹

∂𝐿𝑢
𝑑𝐿𝑢 +

∂𝐹

∂𝐴𝑠
𝑑𝐴𝑠 +

∂𝐹

∂𝐿𝑠
𝑑𝐿𝑠 

        
∂𝐹

∂𝐴𝑢
= −

∂𝐹

∂𝑘

𝑑𝑘

𝑑𝐴𝑢
−

∂𝐹

∂𝐿𝑢

𝑑𝐿𝑢

𝑑𝐴𝑢
−

∂𝐹

∂𝐴𝑠

𝑑𝐴𝑠

𝑑𝐴𝑢
−

∂𝐹

∂𝐿𝑠

𝑑𝐿𝑠

𝑑𝐴𝑢
 

 

Given that 
𝑑𝑘

𝑑𝐴𝑢
=

𝑑𝐿𝑢

𝑑𝐴𝑢
=

𝑑𝐿𝑠

𝑑𝐴𝑢
= 0, this reduces to: 

 

     
∂𝐹

∂𝐴𝑢
= −

∂𝐹

∂𝐴𝑠

𝑑𝐴𝑠

𝑑𝐴𝑢
 

 

I solve for the first unknown, 
∂𝐹

∂𝐴𝑢
 : 

          
∂𝐹

∂𝐴𝑢
=

∂

∂𝐴𝑢
{𝑘α[(𝐴𝑢𝐿𝑢)σ + (𝐴𝑠𝐿𝑠)σ]

1−α

σ } 

     = 𝑘α 1−α

σ
[(𝐴𝑢𝐿𝑢)σ + (𝐴𝑠𝐿𝑠)σ]

1−α

σ
−1σ(𝐴𝑢𝐿𝑢)σ−1𝐿𝑢  

    ⇔
∂𝐹

∂𝐴𝑢
= 𝑘α(1 − α)[(𝐴𝑢𝐿𝑢)σ + (𝐴𝑠𝐿𝑠)σ]

1−α

σ
−1(𝐴𝑢𝐿𝑢)σ−1𝐿𝑢 

  

I solve for the second unknown, 
∂𝐹

∂𝐴𝑠
 : 

          
∂𝐹

∂𝐴𝑠
=

∂

∂𝐴𝑠
{𝑘α[(𝐴𝑢𝐿𝑢)σ + (𝐴𝑠𝐿𝑠)σ]

1−α

σ } 

     = 𝑘α ⋅
1−α

σ
[(𝐴𝑢𝐿𝑢)σ + (𝐴𝑠𝐿𝑠)σ]

1−α

σ
−1 ⋅ σ(𝐴𝑠𝐿𝑠)σ−1 ⋅ 𝐿𝑠 

     ⇔
∂𝐹

∂𝐴𝑠
= 𝑘α(1 − α)[(𝐴𝑢𝐿𝑢)σ + (𝐴𝑠𝐿𝑠)σ]

1−α

σ
−1(𝐴𝑠𝐿𝑠)σ−1𝐿𝑠 

 

I solve for the third unknown, 
𝑑𝐴𝑠

𝑑𝐴𝑢
 : 

First, notice that we can rewrite the constraint (𝐴𝑠)ω + γ(𝐴𝑢)ω ≤ 𝐵 as 𝐴𝑠 = [𝐵 − γ(𝐴𝑢)ω]
1

ω . 

 

Now, differentiate As with respect to Au: 

          
𝑑𝐴𝑠

𝑑𝐴𝑢
=

𝑑

𝑑𝐴𝑢
{[𝐵 − γ(𝐴𝑢)ω]

1

ω} 

      =
1

ω
[𝐵 − γ(𝐴𝑢)ω]

1

ω
−1 ⋅ −γω(𝐴𝑢)ω−1 

     ⇔
𝑑𝐴𝑠

𝑑𝐴𝑢
= [𝐵 − γ(𝐴𝑢)ω]

1−ω

ω ⋅ −γ(𝐴𝑢)ω−1 

 

Now, notice that [𝐵 − γ(𝐴𝑢)ω]
1−ω

ω = (𝐴𝑠)1−ω. 

 

Substituting, we get: 

    
𝑑𝐴𝑠

𝑑𝐴𝑢
= −γ(𝐴𝑢)ω−1(𝐴𝑠)1−ω 
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Therefore, 
∂𝐹

∂𝐴𝑢
= −

∂𝐹

∂𝐴𝑠

𝑑𝐴𝑠

𝑑𝐴𝑢
 

 

(𝑘α(1 − α)[(𝐴𝑢𝐿𝑢)σ + (𝐴𝑠𝐿𝑠)σ]
1−α

σ
−1(𝐴𝑢𝐿𝑢)σ−1𝐿𝑢)

= − (𝑘α(1 − α)[(𝐴𝑢𝐿𝑢)σ + (𝐴𝑠𝐿𝑠)σ]
1−α

σ −1(𝐴𝑠𝐿𝑠)σ−1𝐿𝑠)

× (−γ(𝐴𝑢)ω−1(𝐴𝑠)1−ω) 

 

 
(𝐴𝑢𝐿𝑢)σ−1𝐿𝑢 = (𝐴𝑠𝐿𝑠)σ−1𝐿𝑠γ(𝐴𝑢)ω−1(𝐴𝑠)1−ω  

 

𝐴𝑢
σ−ω = γ

𝐿𝑠
σ

𝐿𝑢
σ 𝐴𝑠

σ−ω 

 

(
𝐴𝑠

𝐴𝑢
)

ω−σ

= γ (
𝐿𝑠

𝐿𝑢
)

σ

 

 

 

 

X. Appendix D: Graphs for Parameter Robustness 
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Figure 18 presents the results of solving for Au and As (equations (4) and (5) respectively) and 

then regressing equation (8) to obtain ρ1 estimates presented in Figure 18(a) and regressing 

equation (9) to obtain λ1 estimates presented in Figure 18(b), for a host of plausible values of the 

elasticity of substitution. Recall that if ρ1 > λ1 ≥ 0 we have the case of relative skill bias, and if ρ1 

> 0 while λ1 < 0 we have the case of absolute skill bias. As the elasticity of substitution tends 

toward 1, skilled and unskilled labor become more imperfect substitutes, and we see more 

evidence of an absolute skill bias. As the elasticity of substitution tends toward 2.5, skilled and 

unskilled labor become more perfect substitutes, and we see more evidence of a relative skill 

bias.  

 

Figure 19 presents the results of solving for Au and As (equations (4) and (5) respectively) and 

then regressing equation (8) to obtain ρ1 estimates presented in Figure 19(a) and regressing 

equation (9) to obtain λ1 estimates presented in Figure 19(b), where instead of assuming that the 

capital share of income α = 1/3, I use data on the labor share of income from the Penn World 

Table to get country-year specific values according to the equation αi,t = 1 − Labor Share of 

Incomei,t. As is evident in Figure 19, we see strong evidence of relative skill bias until the early 

2000’s, at which point we begin to see strong evidence of an absolute skill bias.  

 

Appendix E: Proof of Solution to the Constrained Maximization Problem 

 

Claim: For each country in each year, a solution to the following constrained maximization 

problem exists and is unique.  

 

Proof. Let 𝑓(𝐴𝑢, 𝐴𝑠) be the continuous objective function and let ℎ(𝐴𝑢, 𝐴𝑠) be the continuous 

constraint. Let 𝐴𝑢 ∈ 𝒜𝓊, where 𝒜𝓊 is the set of possible unskilled labor technologies. As 

implied by the constraints, 𝒜𝓊 = [0, (
𝐵⋆

γ⋆)

1

ω⋆

] ⊆ ℝ. Being a closed and bounded subset of the real 

line, 𝒜𝓊 is a compact set in (ℝ, 𝑑2). Let 𝐴𝑠 ∈ 𝒜𝓈, where 𝒜𝓈 is the set of possible skilled labor 

technologies. As implied by the constraints, 𝒜𝓈 = [0, (𝐵⋆)
1

ω⋆] ⊆ ℝ. Being a closed and bounded 
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subset of the real line, 𝒜𝓈 is a compact set in (ℝ, 𝑑2). 𝒜𝓊 × 𝒜𝓈 ⊆ ℝ2 being a closed and 

bounded subset of ℝ2 is therefore a compact set in (ℝ2, 𝑑2). The feasible constraint set of 

technology choices is 

 

𝒯 = {(𝐴𝑢, 𝐴𝑠): 𝐴𝑢, 𝐴𝑠 ∈ 𝒜𝓊 × 𝒜𝓈  𝑎𝑛𝑑  ℎ(𝐴𝑢, 𝐴𝑠) ≤ 𝐵⋆} 

  

𝒯 is a closed set because it is the pre-image of a closed set under a continuous function – that is 

ℎ−1([0, 𝐵⋆]). 

𝒯 is compact because it is a closed subset of the compact set 𝒜𝓊 × 𝒜𝓈. 

 

 

Lemma.  𝒯 is non-empty. 

 

Proof. The choice set where there is no technology, that is (𝐴𝑢, 𝐴𝑠) = (0,0) so that ℎ(𝐴𝑢, 𝐴𝑠) ≤
0, lies in the set 𝒯. Therefore 𝒯 ≠  ∅. 

 

 

Given that 𝑓 is a continuous function on the nonempty compact set 𝒯, by the Extreme Value 

Theorem, 𝑓 has a maximum at some point over 𝒯. 

 

 

Given that 𝒯 ⊆ ℝ2 and that 𝑓 is strictly concave, then 𝑓 has at most one maximizer. 

 

 

Conclusion: Therefore, the solution to the constrained maximization problem exists and is 

unique. ∎ 
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