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With the publication on John von Neumann’s and Oskar Morgenstern’s book Theory of 
Games and Economic behavior (1944) and John F. Nash’s Equilibrium Points in n-person 
Games (1950), economics was given powerful modeling tools to study behavioral interactions.  
These tools however, are still with limitations, relying heavily upon assumptions that Homo 
economicus is perfectly rational and can compute complex decisions costlessly and efficiently.  
This assumption was loosened by the argument of bounded rationality, which argues that humans 
are not capable of making efficient decisions because they can not acquire complete information 
and do not possess the skills to calculate wholly efficient outcomes.  With the development of 
bounded rationality and the publication of Maynard Smith’s (1982) Evolution and the Theory of 
Games, evolutionary models finally gave economist accurate tools to model strategic human 
interaction.  The strategic play between agents has existed as long as agents have been placed in 
environments where scarcity is an issue, and according to evolutionary theory strategies that 
perform poorly will get selected out of the population.  However, most humans in any given 
population find themselves playing quasi-altruistic strategies. Altruism in an evolutionary sense 
is any strategy that benefits ones opponent at a cost to oneself, Bergstrom and Stark (1993) or 
any behavior that reduces the actor’s fitness while increasing the fitness of another.  Bergstrom 
and Stark (1993) have demonstrated that even in some highly specified populations pure 
altruistic strategies can survive.  But most humans do not live in these highly specified 
environments and still show some signs of altruistic behavior.  If evolutionary dynamics 
propagates stronger strategies, humans should show no signs of altruism, because altruistic 
preferences are generally weaker than egotistical ones.   

Much work has been done on the study of altruistic strategies.  As previously mentioned 
Bergstrom and Stark How Altruism Can Prevail in an Evolutionary Environment (1993) asserts 
that evolutionary altruism can exist in siblings, and other specific environments.  Bergstrom has 
written many other papers dealing with siblings and altruism.  Simon (1993) asserts that altruism 
exists as a form of coping with the limitations of human rationality.  Paul Samuelson (1993) 
shows that altruism is a problem between group and individual selection.  Altruists, Egotists, and 
Hooligans in a Local Interaction Model by Eshel, Samuelson, and Shaked (1998) makes a very 
good case for altruists in local models.  For the theoretical framework Maynard Smith’s (1982) 
Evolution and the Theory of Games is indispensable for the argument.  Nelson and Winter (2002) 
make a good case for evolutionary economics and present a fine survey of the theoretical 
literature on the subject.  These are all valid arguments, but concentrate on single shot games, 
which do not accurately model continual interaction.  This paper will evaluate human interaction 
based on sustained encounters between agents.  The reasoning behind this assumption is humans 
are a sociable species who readily form and maintain relationships.  It is far more accurate to 
model human interaction based on regular encounters and sustained interaction, rather than 
random pairings and single shot games. Altruistic systems can evolve and remain evolutionary 
stable through agents who play quasi-evolutionary strategies.  

 
I.  GAME THEORY 
 Games are highly specialized environments where the payoff to both players is directly 
determined by the actions the other player takes. Each player’s predetermined action is called a 
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strategy.  Strategies vary depending on the game but always include a choice between two or 
more options.  A simple game would go like this: 
 
Bob and Sally go to a restaurant and both prefer chicken wings to any other food.  The restaurant 
produces orders of chicken wings in two serving batches, however if only one person orders 
wings they get both servings because the restaurant has no capacity to keep the excess wings 
warm.  If Bob orders wings and sally doesn’t Bob gets six points because he receives twice as 
many wings for the same price, and Sally gets two points because she gets a regular size serving 
of a lesser preferred food.  If Sally orders wings, and Bob doesn’t, Sally gets six points because 
she gets both orders for the same price, and Bob gets two points because he gets a regular size of 
a lesser preferred food. If both people order wings they both get three points because they share 
the wings. If no one orders wings Bob and Sally both get two points because they are ordering 
food of a lesser preference.  
     
Figure 1 
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Figure 1 is what is referred to as a normal form game, which shows the payoff for each 

player depending on how the game is played. The equilibrium of this game is not hard to find, 
both players will order wings and both receive three points.  Equilibrium outcomes in games are 
called Nash equilibria, names after John Forbes Nash jr. who originally developed the solution to 
such problems.  They exist when both players play a best response function against each other.  
They best response in the game above is to order wings, because no matter what the other player 
does, ordering wings will generate the highest payoff.  If both players play their best response, 
order wings, both could do no better with any other strategy and the game would be in 
equilibrium, where both players order wings.  Not all games have such obvious equilibria.  
Another Game: 

 
You and your opponent both agree to go to a party.  You chose to bring or not to bring a 

forty and your opponent will choose to bring or not bring a bottle of wine. Both of you agree to 
share whatever you bring.  If you decide to bring a forty and your opponent decides to bring a 
bottle of wine, then you both share and each receive five points.  If you bring a forty and your 
opponent does not bring wine, your opponent gets to share your forty, but does not have to pay 
for anything, thus receiving eight points while you receive one point.  If you do not bring a forty 
but your opponent brings wine then you get to share the wine at no cost and receive eight points 
while your opponent receives one.  If no one brings anything to the party at all, both of you drink 
Natural Lite out of a keg and both receive three points each. 
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Figure 2 
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This type of payoff (Figure 2) is actually called a prisoner’s dilemma (P.D) game, which 

was based on the original game where two prisoners decide to either confess or not confess.  The 
Nash equilibrium is where both players do not bring anything, or defect, because defection is the 
best response to any action the other player takes. If the other player colludes defection will 
bring eight points, if the other player defects, defection will bring three points.  Collude, collude 
cannot be a Nash equilibrium because each player could do better by defecting.  It is obvious that 
if both players collude they will earn more points than if they both defect, and that is the reason 
this is called a dilemma.   

Now consider playing this game not once, but a number of times over and over again, 
adding up the cumulative score over the entire game.  This is called a repeated game, because it 
is repeated.  The strategy for repeated games differ from single shot games, especially in P.D 
games, because both players can do a lot better by sustaining a collude, collude relationship over 
a time.  Consider a 10 round game, if both players defect all the way through they both earn 30 
points.  If both players collude all the way through they both earn 50 points.  It is worth taking 
the chance on the first round to collude and receive a much higher payoff.  The best known 
strategy that employs this method is called a tit-for-tat strategy, where the player always colludes 
on the first turn, then does whatever the other player did on the previous turn.  If the game starts 
where both players collude and collusion continues, then there is pressure to defect right before 
the last turn to capture the higher payoff. This is in fact the best strategy but is hard to 
accomplish because both players are assumed to know this.  Consider a 100 turn repeated P.D 
game.  Both players start by colluding and each know that the other will defect on round 99, so 
each player defects before that round.  The specific point where each player defects is known as 
a defection point.  Defection points vary widely but all try to do the same thing, capture the 
excess payoff, while maximizing the current collude, collude situation.   

 
II. EVOLUTIONARY GAME THEORY 
 Game theory is a very useful tool in modeling strategic outcomes, but there are downfalls 
with using it to model human interaction.  Game theoretic models assume that each player is 
rational and can solve effectively the sometimes-complex decisions that the equilibrium outcome 
of games demand. Also there may exist several Nash equilibria in any given game, game theory 
does not tell at which ones humans will arrive; it just tells us where they are.  
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Figure 3: Samuelson (2002) 
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The Joint Venture game gives a very good example of the difference between 

evolutionary game theory and game theory.  Consider a game where two people are given the 
opportunity to form a joint venture and adhere to the payoff scheme of Figure 3.  If both players 
go IN, they each receive a profit of two, if not the both recipe 0.   Both  
IN, IN and OUT, OUT are Nash equilibria but at which point will humans arrive.  In 
Evolutionary theory there is only one evolutionary stable outcome, IN, IN. 
  Evolutionary game theory was actually developed by biologist to study the evolution of 
animals in the wild.  Economist started applying it because it allows natural selection of 
strategies to determine the outcome of games and populations.  Evolutionary game theory 
assumes that there exists a population consisting of agents each “hard-wired” with a specific 
phenotype, or strategy.  A hard-wired strategy is the strategy the agent plays no matter what; it is 
embedded in his/her genes, and governs how they interact with the rest of the population.  Then 
agents are paired at random to play games; those who do better are said to have a “fitter” 
strategy.  The fitness of a strategy depends on how well it does relative to the rest of the 
population.  Evolutionary outcomes are the result of dynamic selection; agents who are “hard-
wired” with weaker strategies die out, while agents with fitter strategies propagate faster and 
dominate the population.  In economic games this can be easily seen where players using fitter 
strategies do better, and are imitated by the player’s acquaintances or other observers.  
Evolutionary game theory is basically the natural selection of strategies; stronger strategies 
propagate themselves faster and come to dominate the population, while weaker strategies die 
out. During this process of random gaming, “mutations” among the agent’s phenotypes in the 
population might occur by some random chance.  Mutations might do better against the 
prevailing strategy within the population, and be able to successfully invade and dominate the 
population.  If the strategy within the population cannot be successfully invaded by a mutant it is 
said to be an evolutionary-stable strategy (ESS).  Conversely, if the population can be 
successfully invaded it is cannot be evolutionary stable.   

Consider a population where each agent is hard-wired to play the OUT strategy, or the IN 
strategy in the joint venture game (Figure 3).  When two OUT players are paired by chance the 
outcome is 0, 0 because each agent is born to play OUT.  When Two IN players are paired by 
chance they both receive 2.  IN players do better and during the next round of play there will be 
more IN players, due to higher rates of propagation, or imitation.  Through the rounds IN players 
will come to dominate the population and OUT players will die out.  The strategy of IN is an 
ESS because no mutant OUT player could successfully invade the population.   

 
 
 

 



Issues in Political Economy, Vol. 12, August 2003 

III. ALTRUISM   
First we must revisit the definition of what altruism is, and how it affects human 

behavior.   Altruism in an evolutionary sense is any strategy that benefits ones opponent at a cost 
to oneself, Bergstrom and Stark (1993) or any behavior that reduces the actor’s fitness while 
increasing the fitness of another.  Simon (1993, pg. 156).  Altruistic strategies are by definition 
weaker, so they should have been weeded out of the population a long time ago, but even today 
humans display acts that lower their fitness while increasing the fitness of others.  

To model the existence of altruism this paper will use a repeated P.D. game of an 
undisclosed horizon for several reasons.  The strategy of collusion is a strictly dominated 
strategy, and lowers the agent’s fitness while increasing the opponents.  Also in groups, collusion 
rises the fitness of the group at a cost to the individual.  Although wholly altruistic agents will be 
selected out, wholly altruistic outcomes can exist through quasi-altruistic agents.  I deem tit-for-
tat agents rational altruists, because they incur a cost due to risk on the first round of play, and 
then adjust accordingly.  They are rational in the sense that they only get fooled once, but they 
are altruistic because of their tendency toward collusion, and the risk they incur on the first round 
of play.  Timid-altruistic agents, agents who defect on the first round, then collude on the second 
round if matched against a tit-for-tatter, or defect on the second round if paired with a defector, 
could also exist if their where a high enough amount of tit-for-tat agents, or pure altruists.  For 
the purpose of this paper the two phenotypes of the population will include egotists (defector 
agents), or rational altruists (tit-for-tat agents).   
 For the existence of an evolutionary stable altruistic system, three assumptions must be 
made.   

1. The repeated game must be of an undisclosed horizon 
2. There must be an appropriate discount rate 
3. The initial distribution of agents must be sufficient to support rational altruists 

 
The repeated game must be of an undisclosed amount of rounds; the players must not know 
when the game will end.  This is a valid assumption because in life humans do not know when 
repeated games will end among close associates, relatives and friends.  Unless the agent moves, 
or dies the game will go on with a relatively small chance of coming to an end.  This assumption 
is made to counter defection points that occur near the end of a repeated game.  If agents know 
when the game or relationship will end, they will defect before it is over. 
 The discount rate also deals with the longevity of the game.  If the payoff in the future is 
discounted so it is worth less than the payoff of defecting in the next round, then the player will 
defect.    
                    

  IF:     ∑t-n E(∏c) / (1-r)t-n  <  E( ∏d)      Then the player will defect.                                                    
 
Where, t = termination round, n = next round, ∏c = payoff of collusion, ∏d = payoff of 
defection 
 
This is also a valid assumption, backed by assumption one.  If the player has no real idea of how 
many rounds are left in the game the payoff in the future cannot be appropriately discounted, and 
making a mistake of discounting to much may cause the player to defect too early, costing the 
player many rounds of higher payoffs.    However, the higher the discount rate goes the lower the 
cost of guessing goes, so with a very high discount rate defection points might exist. 
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 The initial distribution of agents in a population is the most important assumption and 
most difficult to validate. With too many egotist in the initial population all rational altruist will 
be selected out, because the probability that he/she would be paired with another rational altruist, 
and score higher than an egotist would be too small to effectively dominate the population.  
However, the longer the game runs, the excess payoff that the egoists receive from defecting on 
the first round becomes increasingly small relative to the amount of payoff colluding agents 
receive.  Consider the payoff from the repeated P.D game (Figure 2).   
 
Figure 2 
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If the agents in this population are randomly paired to play a 10 round repeated P.D game then 
the normal form game actually looks like this. 
 
Figure 4 
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If a rational altruist meets a rational altruist they both collude continually for ten rounds and earn 
50 points each.  If two egotists meet they both earn 30 points each.  If an egotist meets a rational 
altruist the egotist get 35 points while the rational altruist gets 28 points. If there are significantly 
more egotists in the initial population then the population will evolve entirely into egotists.  If the 
population starts with a high number of rational altruists then the population will evolve into 
entirely rational altruists who continually collude.  Say X, 0< X < 1, is the population proportion 
of rational altruists, and therefore, (1-X) is the population proportion of egotists.   
 
The expected payoff of a rational altruist is  
 
                                              50X + 28(1-X) = 22X + 28  
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            E (Π r.a) = 22X+28 
   
The expected payoff of an egotist is:  
            

           35X + 30(1-X) = 5X + 30 
           E (Π e.) = 5X + 30 
 
A rational altruist is fitter than and egotist if: 
      
                                               22X + 28 > 5X + 30 
                       17X > 2      
                                                        X > .1176  
 
A rational altruist is fitter that an egotist if more than 11% of the population is already a rational 
altruist. If there is an initial assignment of anything greater than 11%, rational altruists will 
evolve into a stable population, or an ESS. The initial population requirement decreases with an 
increase in rounds played per repeated game.  If the initial assignment is exactly 11% rational 
altruists, and 89% egotists then the population will evolve when a random mutation occurs and 
tips the scale. With only quasi-altruistic players, a stable system of altruism can evolve.  
 In an evolved altruistic system of players composed of rational altruists, invasions of 
egotistical mutants will fare poorly and fail to invade the population successfully.  If a mutation 
of a purely altruistic player occurs, a player who colludes no matter what, then they receive the 
same payoff of the fitter strategy of the rational altruist.  This is called a neutral stable strategy, 
because they receive the same payoff as the fitter strategy, but if by chance they played an egotist 
mutant they would fare absolutely horribly.   
 With these three assumptions and the proper assignment of initial players altruistic 
populations can form and remain, as an evolutionary stable system, propagated by quasi-
altruistic agents in repeated games of undisclosed horizons. 
 
IV.  EMPIRICAL EVIDENCE 
 To try and prove that systems like this can in fact form in real life, by real human players, 
an experiment was conducted to gather data on repeated P.D. game play.  The experiment was 
designed to try and simulate each condition accurately. There were two groups of participants, 
economic majors (Group 1), and those who have never taken an economics class (Group 2).  The 
economic majors were assumed to have prior knowledge and experience with repeated game 
play.  This was suppose to simulate an already evolved player, someone who has studied 
repeated games should know about the tit-for-tat strategy, and have a basic understanding behind 
the theory.  Non economic players were assumed to have no background with repeated games, 
and were assumed to be un-evolved players.  The game was designed so that each player played 
a number of games, but never against the same opponent.  Also to try and stop defection in later 
rounds of play, the rounds were alternated between 9, 10, and 11.  By adding some uncertainty 
into the amount of rounds played I hoped that players would have a harder time judging when to 
defect therefore curbing the tendency to do so.  The participants were handed directions 
(Appendix) and all questions were answered.  Participants waited in a room next to the gaming 
area and were asked not to discuss strategy amongst each other.  Each participant was assigned a 
number and when their number was called they were to play the game. When their number was 
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called they came to the gaming area, were blindfolded and given little signs to signal “collude” 
or “defect”.  The experiment started on round one, to which both players would signal “collude” 
of “defect”.  After each round the players were relayed their score so they knew what had 
happened in that round.  After the game was over they were given their game score against there 
opponent.  The player’s game scores were added to form a total score and were evaluated on how 
well they did against the group.      
 
V.  ANALYSIS  
 The experiments yielded very interesting results overall that coincided with my 
hypothesis, and gave light to very specific and fascinating anomalies in rounds of play.  
Group one participants, the economic majors, generally had a clear and defined strategy of play. 
Group two participants, the other majors, had a more random strategy set.  

The participants in group one each played three games, of which only the first nine 
rounds were summed to form their score.  There existed four clear egotists, those who always 
play defection strategies, the egotists were players 1, 4, 5, and 6. There were four mixed players, 
where sometimes they played defection strategies, and other times they colluded.  These were 
players 7, 8, 9, and 10. There were five rational altruists, those who generally played cooperative 
strategies.  These were players 2, 3, 11, 12, and 13.  The highest scoring player was player 13, 
with a score of 139 points.  This leads me to believe that in later games played more agents 
would imitate the strategy of player 13 which is that of a rational altruist.  The averages score 
amount for the rational altruist was 111.8 points, while the egotist had an average of 105.  This 
again supports that rational altruists play a fitter strategy that would be imitated, prorogated and 
become stable within the system.   

There were interesting occurrences within the games of play, which should be pointed 
out.  Several times a cooperative outcome came into existence not by normal tit-for-tat play of 
collusion of the first round but by missed and corrected for cooperation.  Player 9 versus player 
11, player 13 versus player 10, and player 11 versus player 1 all had sustained collusion resulting 
after a first round defection.  This could be a way of insulating the risk associated with random 
pairings.  By defecting on the first round one can guard him/herself from an egotist, but once the 
opponents strategy is identified a rational altruist, the player colludes on the second and third 
round to form and remain in collude/collude play.      

Player 7 vs. player 6 yielded an interesting insight into purely altruist strategies. Player 7 
colluded no matter what and was slaughtered. Player 7’s second game resulted in stable collusion 
but by the third game the player switched to defection strategies. This shows that pure altruism 
dies relatively quickly as better strategies are hastily adopted.  Defection points, marked by *, 
appeared among the rational altruist’s, although the experiment was designed to avoid such play. 
There were several perfect games where a stable collusion outcome was defected upon on the 
last round of play, player 13, and game 1, 3, and player 3, game 2.  By the third game nearly all 
of the rational altruists were playing defection strategies.   

The players of mixed strategies showed a dynamic shift from their original strategy.  Two 
players 9, 10 shifted from defection strategies to collusion tendency, player 8 went from 
collusion to defection strategies, and player seven was mentioned before.  Players 9,and 10 
seemed to learn that colluding could be beneficial and adjusted their strategies accordingly.  
Player 8, went from steady collusion to defection, which is counter-intuitive, since the 
expectation would be the other way around.   
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Overall Group 1 performed rationally with defined strategies and had outcomes along the 
lines that were theoretically predicted. The group showed that the initial assignment of agents in 
the system was enough to support a wholly altruistic system.  Since the rational altruists scored 
on the average higher than the egotists, and the highest scoring player was a rational altruist, 
theoretically through evolutionary dynamics this group would evolve to a wholly altruistic 
system created by quasi-altruistic players. However, to conclude empirically that the group 
would in fact evolve that way would require resources beyond the scope of this paper.  It is 
enough to see that the initial conditions for the theoretical evolution to altruistic systems have 
been met. 

Group 2 displayed generally mixed and confused strategy sets.  While there were six 
players that generally followed cooperative strategies, many cooperators defected on the second 
round of play then seemed to randomly collude at different intervals during the game. The 
egotists just played defection strategies.  There was one player, player 5, who could be 
considered a pure altruist and took a considerable amount of loss by playing that strategy.  Player 
5, unlike player 7 in group one, did not change his strategy and took losses thorough the games 
of play.  

The average egotist earned 148 points, while the average cooperator earned 125 points.  
Theoretically there are enough rational altruists to support continued cooperative play, but the 
bizarre and random defection points, and the random mid-game collusion did not allow those 
players to enter into sustained cooperation.  Since the strategy sets were so random it makes 
sense defectors would have a higher average score since they could always take advantage of 
random collusion moves that the cooperators made.  

 The data generated by Group 2 lends less insight into the theoretical evolutionary 
outcome of the group because the strategy sets are much less defined.  Since participants of 
group two had no formal education about the theory of games their strategies could be seen as 
less refined or evolved as the group one strategies.  Looking at the data in this fashion we could 
conclude that if group two were left to evolve through evolutionary dynamics, they first would 
arrive at clearly defined strategy sets, rational altruists, or egotist would emerge, and then vie for 
population dominance.  This makes theoretical sense but to empirically test the outcome would 
again require resources far beyond the scope of this paper.  Group 2 lets us see that economics 
majors played clearer more refined strategies, supporting the assumption that they could be 
considered more refined players.       
 
VI.  CONCLUSION 
 It is theoretically possible if conditions are met that wholly altruistic system can evolve 
from quasi-altruistic players.  The empirical data, while inconclusive that those systems do form, 
supports the notion that human players do play cooperative strategies, earn higher payoffs from 
those strategies, and supports the condition of sufficient initial assignment of rational altruistic 
agents.  While the empirical data to prove the formation of those systems is beyond the reach of 
this paper, the observations of human interaction are not.  Humans are social creatures, we form 
groups of people that we interact with in a kindly fashion. Altruistic behavior is not in any way 
unobservable in the real world.  Humans constantly incur cost on themselves for the benefit of a 
group, or the chance to enter into a continuous beneficial relationship. Egotistical behavior is 
also highly observable in the real world, and the existence of that behavior has been well 
documented for centuries. Altruistic systems are theoretically possible, and do exist in the world. 
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So it is strange to say that Homo economicus is completely egotistical, and it seems completely 
reasonable to consider some human behavior as humane.  
 
APPENDIX 
      
Directions 

1. You will each be assigned a number, please remember that number. 
2. When your number is called please go to the Econ suite offices. 
3. Once there, you will be blindfolded and asked to play a game against your opponent. 
4. The Game:  Forty’s and Wine 

 
You and your opponent both agree to go to a party.  You chose to bring or not to bring a 

forty, and your opponent will chose to bring or not bring a bottle of wine. Both of you agree to 
share whatever you bring.  If you decide to bring a forty and your opponent decides to bring a 
bottle of wine, then you both share and each receive five points.  If you bring a forty and your 
opponent does not bring wine, your opponent gets to share your forty, but does not have to pay 
for anything, thus receiving eight points while you receive one point.  If you do not bring a forty 
but your opponent brings wine then you get to share the wine at no cost and receive eight points 
while your opponent receives one.  If no one brings anything to the party at all, both of you drink 
Natural Lite out of a keg and both receive three points each. 
  

The Payoff Matrix looks like this: 
 Bring Don’t Bring 
Bring 5,5 1,8 
Don’t Bring 8,1 3,3 
 

5. While blindfolded A round number will be called out, to which you will play the 
game by raising your right hand to signal bring (collude), or your left hand to signal 
not to bring (defect) 

6. Your score for that round will be relayed to you, and the next round will start 
7. The game will continue for several rounds  
8. Your points for each round will be added up and you will receive a total score against 

that player. 
9. After the game, go back to room 106, eat some food and await your next game.  
10. Your points against each player will be added up to give you a total score. 
11. Players with the highest total scores win. 
 
      PLEASE ASK ANY QUESTIONS IF ANYTHING IS UNCLEAR 
 

Note: If you feel uncomfortable with the description of the game, switch forty to brownies, wine 
to cookies, and Natural Lite to cake.   
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Data 
 

All data was collected during the experiment.  Group one consists of the economic 
students, while group two consists of non-economic students.  All data was collected at the same. 
An asterisk next to the score represents a defection point.  Every attempt was made to keep the 
results unbiased and accurate.   A Key for the layout is represented here: 

 
Player Number Collude
Round Number

Player Vs. Game 1 2 3 4 5 6 7 8 9 10 Score
Player 2 1 C, 5 D,8 C,1 14 
Player # 2 
Player # 3 
Player # 4 

Total Score 14 
 
The player’s number is followed by what classification of player he/she is.  Beneath the player’s 
number is the round number 1 through 10. The chart is read from left to right, where each game 
has ten rounds. For example: this player played against player two in game one. One the first 
round this player colluded represented by C followed by the score earned 5.  In the second round 
of the first game the player defected, represented by D, earning a score of 8.  The third round of 
the game the player colluded but only earned a score of 1.  The total game score is shown at the 
far right of the chart and the total players score is shown in the bottom right.    After the first 
game is completed after 8, 9, or 10 rounds then the player will play game number two against the 
next player represented in the next column, again read form left to right.    
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Group 1
Player 1 Defect
Round Number

Player Vs. Game 1 2 3 4 5 6 7 8 9 10 Score
Player 2 1 D,8 D,8 C,1 D,3 D,8 D,8 D,8 D,3 D,3 50 
Player 12 2 D,8 D,3 C,1 D,8 D,3 D,3 D,3 D,3 D,3 35 
Player 11 3 D,8 C,1 D,8 D,3 D,3 D,3 D,3 D,3 D,3 35 

Total Score 120 

Player 2 Collude
Round Number

Player Vs. Game 1 2 3 4 5 6 7 8 9 10 Score
Player 1 1 C,1 C,1 D,8 D,3 C,1 C,1 C,1 D,3 D,3 22 
Player 3 2 C,5 C,5 C,5 C,5 C,5 C,5 C,5 C,5 C,5 D,8* 45 
Player 13 3 C,5 C,5 C,5 C,5 C,5 C,5 C,1* D,3 D,3 37 

Total Score 104 

Player 3 Collude
Round Number

Player Vs. Game 1 2 3 4 5 6 7 8 9 10 Score
Player 4 1 C,1 C,1 D,3 D,3 D,8 D,3 D,3 D,3 D,3 D,3 28 
Player 2 2 C,5 C,5 C,5 C,5 C,5 C,5 C,5 C,5 C,5 D,8* 45 
Player 9 3 C,5 C,5 C,5 C,5 C,5 C,5 C,1* C,1 D,3 D,3 35 

Total Score 108 

Player 4 Defect
Round Number

Player Vs. Game 1 2 3 4 5 6 7 8 9 10 Score
Player 3 1 D,8 D,8 D,3 D,3 C,1 D,3 D,3 D,3 D,3 D,3 35 
Player 7 2 C,1 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 25 
Player 5 3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 27 

Total Score 87 

Player 5 Defect
Round Number

Player Vs. Game 1 2 3 4 5 6 7 8 9 10 Score
Player 4 1 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 27 
Player 6 2 D,3 D,3 D,3 D,8 D,3 D,3 D,3 D,3 D,3 D,3 32 
Player 8 3 C,1 D,3 D,8 D,3 D,3 D,3 D,3 D,3 D,3 D,3 30 

Total Score 89 

Player 6 Defect
Round Number

Player Vs. Game 1 2 3 4 5 6 7 8 9 10 Score
Player 5 1 D,3 D,3 D,3 C,1 D,3 D,3 D,3 D,3 D,3 D,3 25 
Player 7 2 D,8 D,8 D,8 D,8 D,8 D,8 D,8 D,8 D,8 D,8 72 
Player 9 3 D,3, D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 27 

Total Score 124 

Player 7 Collude/Defect
Round Number

layer Vs. Game 1 2 3 4 5 6 7 8 9 10 Score
Player 6 1 C,1 C,1 C,1 C,1 C,1 C,1 C,1 C,1 C,1 C,1 9 
Player 3 2 C,5 C,5 C,5 C,5 C,5 C,5 C,5 C,5 C,5 C,1* 45 
Player 4 3 D,8 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 32 

Total Score 86 

 P
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Player 8 Collude/Defect
Round Number

Player Vs. Game 1 2 3 4 5 6 7 8 9 10 Score
Player 11 1 C,5 C,5 C,5 C,5 C,5 C,5 C,5 C,5 C,5 C,5 45 
Player 10 2 D,3 D,3 D,3 D,8 D,3 D,3 D,3 D,3 D,3 D,3 32 
Player 5 3 D,8 D,3 C,1 D,3 D,3 D,3 D,3 D,3 D,3 D,3 30 

Total Score 107 

Player 9 Defect to Collude
Round Number

Player Vs. Game 1 2 3 4 5 6 7 8 9 10 Score
Player 6 1 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 27 
Player 11 2 D,8 C,1 C,5 C,5 C,5 C,5 C,5 C,5 C,5 D,8* 44 
Player 3 3 C,5 C,5 C,5 C,5 C,5 C,5 D,8* D,3 D,3 D,3 44 

Total Score 115 

Player 10 Defect to Collude
Round Number

Player Vs. Game 1 2 3 4 5 6 7 8 9 10 Score
Player 8 1 D,3 D,3 D,3 C,1 D,3 D,3 D,3 D,3 D,3 25 
Player 12 2 D,8 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 32 
Player 13 3 D,8 C,1 C,5 C,5 C,5 C,5 C,5 C,5 C,1* C,1 40 

Total Score 97 

Player 11 Collude
Round Number

Player Vs. Game 1 2 3 4 5 6 7 8 9 10 Score
Player 8 1 C,5 C,5 C,5 C,5 C,5 C,5 C,5 C,5 C,5 C,5 45 
Player 9 2 C,1 D,8 C,5 C,5 C,5 C,5 C,5 C,5 C,5 C,1* 44 
Player 1 3 C,1 D,8 C,1 D,3 D,3 D,3 D,3 D,3 D,3 D,3 28 

Total Score 117 

Player 12 Collude
Round Number

Player Vs. Game 1 2 3 4 5 6 7 8 9 10 Score
Player 10 1 C,1 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 25 
Player 13 2 C,5 C,5 C,5 C,5 C,5 C,5 C,5 C,5 C,1* D,8 41 
Player 1 3 C,1 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 25 

Total Score 91 

Player 13 Collude
Round Number

Player Vs. Game 1 2 3 4 5 6 7 8 9 10 Score
Player 12 1 C,5 C,5 C,5 C,5 C,5 C,5 C,5 C,5 D,8* C,1 48 
Player 2 2 C,5 C,5 C,5 C,5 C,5 C,5 D,8 D,3 D,3 44 
Player 10 3 C,1 D,8 C,5 C,5 C,5 C,5 C,5 C,5 D,8 D,8 47 

Total Score 139 
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GROUP 2
Player 1 Collude
Round Number

Player Vs. Game 1 2 3 4 5 6 7 8 9 10 Score
Player 2 1 C,5 D,8 C,5 C,1 D,3 C,5 D,1 C,5 D,3 D,1 36 
Player 9 2 C,5 D,8 D,3 D,3 D,8 C,5 C,1 D,3 D,3 D,3 39 
Player 7 3 C,5 D,8 D,3 D,3 D,3 D,3 D,3 D,3 D,3 34 
Player 5 4 D,8 D,8 D,8 D,3 D,8 D,8 D,3 D,3 D,8 D,8 57 

Total Score 166 

Player 2 Collude
Round Number

Player Vs. Game 1 2 3 4 5 6 7 8 9 10 Score
Player 1 1 C,5 C,1 C,5 D,8 D,3 C,5 D,8 C,5 D,3 D,8 43 
Player 3 2 C,1 D,8 D,3 C,1 D,8 D,3 C,1 C,1 D,3 D,3 29 
Player 9 3 C,5 C,1 D,3 D,3 C,1 D,3 D,3 C,1 D,3 C,1 23 
Player 8 4 C,1 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 25 

Total Score 120 

Player 3 Defect
Round Number

Player Vs. Game 1 2 3 4 5 6 7 8 9 10 Score
Player 4 1 C,1 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 25 
Player 2 2 D,8 C,1 D,3 D,8 C,1 D,3 D,8 D,8 D,3 D,3 43 
Player 8 3 D,8 C,1 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 30 
Player 9 4 D,3 D,3 D,3 D,3 D,3 D,3 D,8 D,3 C,5 D,3 34 

Total Score 132 

Player 4 Defect
Round Number

Player Vs. Game 1 2 3 4 5 6 7 8 9 10 Score
Player 3 1 D,8 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 32 
Player 7 2 D,8 C,3 D,8 D,3 D,3 D,3 D,3 D,3 D,3 D,3 37 
Player 6 3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 27 
Player 5 4 D,8 D,8 D,8 D,3 D,8 D,8 D,3 D,3 D,8 D,8 57 

Total Score 153 

Player 5 Collude
Round Number

Player Vs. Game 1 2 3 4 5 6 7 8 9 10 Score
Player 6 1 D,3 C,5 D,8 D,8 C,1 C,1 D,3 D,3 D,3 C,1 35 
Player 8 2 C,5 C,1 C,5 D,3 D,3 D,3 D,3 D,3 D,3 C,1 29 
Player 1 3 C,1 C,1 C,1 D,3 C,1 C,1 D,3 D,3 C,1 C,1 15 
Player 4 4 C,1 C,1 C,1 D,3 C,1 C,1 D,3 D,3 C,1 C,1 15 

Total Score 94 

Player 6 Defect
Round Number

Player Vs. Game 1 2 3 4 5 6 7 8 9 10 Score
Player 5 1 D,3 C,5 C,1 C,1 D,8 D,8 D,3 D,3 D,3 35 
Player 9 2 C,5 C,5 C,5 C,5 C,5 C,1* D,8 D,3 D,8 D,3 45 

ayer 4 3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 27 
Player 10 4 D,8 D,8 D,8 D,3 D,3 D,8 D,3 D,3 D,8 D,3 52 

Total Score 159 

 Pl
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Player 7 Collude
Round Number

Player Vs. Game 1 2 3 4 5 6 7 8 9 10 Score
Player 8 1 C,5 C,1 D,8 C,5 C,1 D,8 C,5 C,1 D,3 D,3 37 
Player 4 2 C,1 D,3 C,1 D,3 D,3 D,3 D,3 D,3 D,3 D,3 23 
Player 1 3 C,5 C,1 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 27 
Player 5 4 

Total Score 87 

Player 8 Collude
Round Number

Player Vs. Game 1 2 3 4 5 6 7 8 9 10 Score
Player 7 1 C,5 D,8 C,1 C,5 D,8 C,1 C,5 D,8 D,3 D,3 44 
Player 5 2 C,5 D,8 C,5 D,3 D,3 D,3 D,3 D,3 D,3 D,8 36 
Player 3 3 C,1 D,8 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 30 
Player 2 4 D,8 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 D,3 32 

Total Score 142 

Player 9 Collude
Round Number

Player Vs. Game 1 2 3 4 5 6 7 8 9 10 Score
Player 1 1 C,5 C,1 D,3 D,3 C,1 C,5 D,8 D,3 D,3 D,3 32 
Player 6 2 C,5 C,5 C,5 C,5 C,5 D,8* C,1 D,3 C,1 D,3 38 
Player 9 3 C,5 D,8 D,3 D,3 D,8 D,3 D,3 D,8 D,3 D,8 44 
Player 3 4 D,3 D,3 D,3 D,3 D,3 D,3 C,1 D,3 C,5 D,3 27 

Total Score 141 
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